Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 115(2): 248-255, 2024 02.
Article in English | MEDLINE | ID: mdl-38082506

ABSTRACT

Anthrax Immune Globulin Intravenous (AIGIV [ANTHRASIL]), was developed for the treatment of toxemia associated with inhalational anthrax. It is a plasma product collected from individuals vaccinated with anthrax vaccine and contains antitoxin IgG antibodies against Bacillus anthracis protective antigen. A pharmacokinetic (PK) and exposure-response model was constructed to assess the PKs of AIGIV in anthrax-free and anthrax-exposed rabbits, non-human primates and anthrax-free humans, as well as the relationship between AIGIV exposure and survival from anthrax, based on available preclinical/clinical studies. The potential effect of anthrax on the PKs of AIGIV was evaluated and estimates of survival odds following administration of AIGIV protective doses with and without antibiotic co-treatment were established. As the developed PK model can simulate exposure of AIGIV in any species for any dosing scenario, the relationship between the predicted area under the concentration curve of AIGIV in humans and the probability of survival observed in preclinical studies was explored. Based on the simulation results, the intravenous administration of 420 U (units of potency as measured by validated Toxin Neutralization Assay) of AIGIV is expected to result in a > 80% probability of survival in more than 90% of the human population. Additional simulations suggest that exposure levels were similar in healthy and obese humans, and exposure in pediatrics is expected to be up to approximately seven-fold higher than in healthy adults, allowing for doses in pediatric populations that ranged from one to seven vials. Overall, the optimal human dose was justified based on the PK/pharmacodynamic (PD) properties of AIGIV in animals and model-based translation of PK/PD to predict human exposure and efficacy.


Subject(s)
Anthrax Vaccines , Anthrax , Antitoxins , Respiratory Tract Infections , Adult , Animals , Humans , Rabbits , Child , Anthrax/drug therapy , Anthrax/prevention & control , Immunoglobulin G , Antitoxins/pharmacology , Antitoxins/therapeutic use , Anthrax Vaccines/therapeutic use , Anti-Bacterial Agents , Antigens, Bacterial/therapeutic use
2.
PLoS One ; 18(3): e0283164, 2023.
Article in English | MEDLINE | ID: mdl-36930692

ABSTRACT

To meet the requirements of the Animal Rule, the efficacy of monotherapy with ANTHRASIL® (Anthrax Immune Globulin Intravenous (Human)) for inhalational anthrax was evaluated in blinded studies using rabbit and nonhuman primate models. Animals in both studies were randomized to treatment groups exposed to ~ 200 LD50 Bacillus anthracis (Ames strain) spores by the aerosol route to induce inhalational anthrax. Rabbits (N = 50/group) were treated with either 15 U/kg ANTHRASIL or a volume-matching dose of IGIV after disease onset as determined by the detection of bacterial toxin in the blood. At the end of the study, survival rates were 2% (1 of 48) in the IGIV control group, and 26% (13 of 50) in the ANTHRASIL-treated group (p = 0.0009). Similarly, ANTHRASIL was effective in cynomolgus monkeys (N = 16/group) when administered therapeutically after the onset of toxemia, with 6% survival in the IGIV control and a dose-related increase in survival of 36%, 43%, and 70% with 7.5, 15 or 30 U/kg doses of ANTHRASIL, respectively. These studies formed the basis for approval of ANTHRASIL by FDA under the Animal Rule.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Humans , Rabbits , Anthrax/microbiology , Immunoglobulin G/pharmacology , Primates , Disease Models, Animal , Antigens, Bacterial
3.
Sci Rep ; 12(1): 16956, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36216961

ABSTRACT

In late 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in China and quickly spread into a worldwide pandemic. It has caused millions of hospitalizations and deaths, despite the use of COVID-19 vaccines. Convalescent plasma and monoclonal antibodies emerged as major therapeutic options for treatment of COVID-19. We have developed an anti-SARS-CoV-2 immunoglobulin intravenous (Human) (COVID-HIGIV), a potential improvement from using convalescent plasma. In this report the efficacy of COVID-HIGIV was evaluated in hamster and mouse models of SARS-CoV-2 infection. COVID-HIGIV treatment in both mice and hamsters significantly reduced the viral load in the lungs. Among COVID-HIGIV treated animals, infection-related body weight loss was reduced and the animals regained their baseline body weight faster than the PBS controls. In hamsters, COVID-HIGIV treatment reduced infection-associated lung pathology including lung inflammation, and pneumocyte hypertrophy in the lungs. These results support ongoing trials for outpatient treatment with COVID-HIGIV for safety and efficacy evaluation (NCT04910269, NCT04546581).


Subject(s)
COVID-19 , Animals , Antibodies, Monoclonal , COVID-19/therapy , COVID-19 Vaccines , Clinical Trials as Topic , Cricetinae , Disease Models, Animal , Humans , Immunization, Passive , Lung/pathology , Mice , SARS-CoV-2 , COVID-19 Serotherapy
4.
Front Immunol ; 12: 717425, 2021.
Article in English | MEDLINE | ID: mdl-34552587

ABSTRACT

The closely related flaviviruses, dengue and Zika, cause significant human disease throughout the world. While cross-reactive antibodies have been demonstrated to have the capacity to potentiate disease or mediate protection during flavivirus infection, the mechanisms responsible for this dichotomy are still poorly understood. To understand how the human polyclonal antibody response can protect against, and potentiate the disease in the context of dengue and Zika virus infection we used intravenous hyperimmunoglobulin (IVIG) preparations in a mouse model of the disease. Three IVIGs (ZIKV-IG, Control-Ig and Gamunex®) were evaluated for their ability to neutralize and/or enhance Zika, dengue 2 and 3 viruses in vitro. The balance between virus neutralization and enhancement provided by the in vitro neutralization data was used to predict the IVIG concentrations which could protect or enhance Zika, and dengue 2 disease in vivo. Using this approach, we were able to define the unique in vivo dynamics of complex polyclonal antibodies, allowing for both enhancement and protection from flavivirus infection. Our results provide a novel understanding of how polyclonal antibodies interact with viruses with implications for the use of polyclonal antibody therapeutics and the development and evaluation of the next generation flavivirus vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Host-Pathogen Interactions/immunology , Immunoglobulins, Intravenous , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Animals , Cell Line , Cross Reactions/immunology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunoglobulins, Intravenous/therapeutic use , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Neutralization Tests , Zika Virus Infection/blood , Zika Virus Infection/drug therapy
5.
Toxicol Lett ; 332: 36-41, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32629075

ABSTRACT

The study examined the degradation of riot control agents (RCAs): 2-chloroacetophenone (CN), 2-chlorobenzalmalononitrile (CS), and capsaicin, using the Reactive Skin Decontamination Lotion Kit (RSDL®) lotion and evaluated the the direct liquid phase reactivity of the RSDL lotion component with each RCA. RSDL lotion was mixed with the selected RCAs at different molar ratios. Reactivity of the active ingredient potassium 2,3-butanedione monoximate (KBDO) with the RCA was observed for one hour. Samples of 10 µL were taken and quenched, analyzed for residual RCA using LC-MS. CN, was degraded at molar ratios of two and above in less than 2 min. At a molar ratio of 1:1 KBDO:CN, ∼90 % of CN was degraded within 2 min, the remaining 10 % residual CN was observed for one hour without any change. CS, degradation of more than 68 % of CS was achieved at 20:1 M ratio of KBDO:CS within 1 h of reaction time. For capsaicin, no degradation was observed regardless of the higher molar ratios of up to 20:1 and longer reaction times of up to one hour. This study provides evaluation of neutralizing action of the RSDL lotion without assessment of the physical removal component by the RSDL Kit.


Subject(s)
Capsaicin/chemistry , Chlorobenzenes/chemistry , Decontamination/methods , Irritants/chemistry , Sensory System Agents/chemistry , Skin Cream/chemistry , Tear Gases/chemistry , omega-Chloroacetophenone/chemistry , Calibration , Capsaicin/analysis , Chlorobenzenes/analysis , Chromatography, High Pressure Liquid , Humans , Irritants/analysis , Sensory System Agents/analysis , Skin , Tear Gases/analysis , omega-Chloroacetophenone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...