Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 12(5): 1397-1415, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28287700

ABSTRACT

Insights into the thermodynamic and kinetic signature of the transient opening of a protein-binding pocket resulting from accommodation of suitable substituents attached to a given parent ligand scaffold are presented. As a target, we selected human aldose reductase, an enzyme involved in the development of late-stage diabetic complications. To recognize a large scope of substrate molecules, this reductase opens a transient specificity pocket. The pocket-opening step was studied by X-ray crystallography, microcalorimetry, and surface plasmon resonance using a narrow series of 2-carbamoyl-phenoxy-acetic acid derivatives. Molecular dynamics simulations suggest that pocket opening occurs only once an appropriate substituent is attached to the parent scaffold. Transient pocket opening of the uncomplexed protein is hardly recorded. Hydration-site analysis suggests that up to five water molecules entering the opened pocket cannot stabilize this state. Sole substitution with a benzyl group stabilizes the opened state, and the energetic barrier for opening is estimated to be ∼5 kJ/mol. Additional decoration of the pocket-opening benzyl substituent with a nitro group results in a huge enthalpy-driven potency increase; on the other hand, an isosteric carboxylic acid group reduces the potency 1000-fold, and binding occurs without pocket opening. We suggest a ligand induced-fit mechanism for the pocket-opening step, which, however, does not represent the rate-determining step in binding kinetics.


Subject(s)
Aldehyde Reductase/chemistry , Models, Molecular , Binding Sites , Humans , Kinetics , Ligands , Molecular Dynamics Simulation , Protein Binding , Structure-Activity Relationship , Thermodynamics
2.
ChemMedChem ; 11(5): 488-96, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26864558

ABSTRACT

Based on 3-(((4-(hexylamino)-2-methoxyphenyl)amino)sulfonyl)-2-thiophenecarboxylic acid methyl ester (ST247, compound 2), a recently described peroxisome proliferator-activated receptor (PPAR)ß/δ-selective inverse agonist, we designed and synthesized a series of structurally related ligands. The structural modifications presented herein ultimately resulted in a series of ligands that display increased cellular activity relative to 2. Moreover, with methyl 3-(N-(2-(2-ethoxyethoxy)-4-(hexylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (PT-S264, compound 9 u), biologically relevant plasma concentrations in mice were achieved. The compounds presented in this study will provide useful novel tools for future investigations addressing the role of PPARß/δ in physiological and pathophysiological processes.


Subject(s)
PPAR delta/antagonists & inhibitors , PPAR-beta/antagonists & inhibitors , Drug Design , Magnetic Resonance Spectroscopy , Mass Spectrometry
3.
Nucleic Acids Res ; 43(10): 5033-51, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25934804

ABSTRACT

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARß/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARß/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARß/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8(+) T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARß/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARß/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARß/δ in immune regulation.


Subject(s)
Gene Regulatory Networks , Macrophage Activation , Macrophages/immunology , PPAR delta/metabolism , PPAR-beta/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Gene Expression Regulation , Humans , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , PPAR delta/agonists , PPAR-beta/agonists , Transcriptome
4.
Oncotarget ; 6(15): 13416-33, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25968567

ABSTRACT

The nuclear receptor peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARß/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARß/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARß/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARß/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARß/δ ligands. These observations suggest that the deregulation of PPARß/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma.


Subject(s)
Linoleic Acid/genetics , Macrophages/pathology , Ovarian Neoplasms/blood , Ovarian Neoplasms/genetics , PPAR delta/genetics , PPAR-beta/genetics , Tumor Microenvironment/genetics , Animals , Case-Control Studies , Fatty Acids , Female , Humans , Ligands , Linoleic Acid/blood , Macrophages/metabolism , Mice , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , PPAR delta/blood , PPAR-beta/blood
5.
ChemMedChem ; 7(1): 159-70, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22025402

ABSTRACT

GSK0660 (1) is the first peroxisome proliferator-activated receptor (PPAR) ß/δ-selective inhibitory ligand described in the literature. Based on its structure, we designed and synthesized a series of modified compounds to establish preliminary structure-activity relationships. Most beneficial for increased binding affinity towards the PPARß/δ ligand binding domain was the replacement of the 4'-aminophenyl substituent by medium-length n-alkyl chains, such as n-butyl or iso-pentyl. These compounds show activity down to the one-digit nanomolar range, thus possessing up to a tenfold higher binding affinity compared with GSK0660. Additionally, the subtype-specific inhibition of PPARß/δ was confirmed in a cell-based assay making these compounds invaluable tools for the further exploration of the functions of PPARß/δ.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , PPAR delta/antagonists & inhibitors , PPAR-beta/antagonists & inhibitors , Sulfones/chemistry , Sulfones/pharmacology , Thiophenes/chemistry , Thiophenes/pharmacology , Animals , Cell Line , Humans , PPAR delta/metabolism , PPAR-beta/metabolism , Structure-Activity Relationship
6.
Mol Pharmacol ; 80(5): 828-38, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21862691

ABSTRACT

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is a ligand-regulated nuclear receptor with essential functions in metabolism and inflammation. We have synthesized a new derivative [methyl 3-(N-(4-(hexylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (ST247) structurally related to the published PPARß/δ inhibitory ligand methyl 3-(N-(2-methoxy-4-(phenylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (GSK0660). ST247 has a higher affinity to PPARß/δ than GSK0660, and at equimolar concentrations, it more efficiently 1) induces the interaction with corepressors both in vitro and in vivo, 2) inhibits the agonist-induced transcriptional activity of PPARß/δ, and 3) down-regulates basal level expression of the peroxisome proliferator responsive element-driven PPARß/δ target gene ANGPTL4. Methyl 3-(N-(4-(tert-butylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (PT-S58), another high-affinity derivative from our series, also efficiently inhibits agonist-induced transcriptional activation, but in contrast to ST247, it does not enhance the interaction of PPARß/δ with corepressors. PT-S58 rather prevents corepressor recruitment triggered by the inverse agonist ST247. These findings classify ST247 as an inverse agonist, whereas PT-S58 is the first pure PPARß/δ antagonist described to date. It is noteworthy that ST247 and PT-S58 are also effective on PPRE-independent functions of PPARß/δ: in monocytic cells, both ligands modulate expression of the activation marker CCL2 in the opposite direction as an established PPARß/δ agonist. The possibility to differentially modulate specific functions of PPARß/δ makes these novel compounds invaluable tools to advance our understanding of PPARß/δ biology.


Subject(s)
PPAR delta/metabolism , PPAR-beta/metabolism , Sulfonamides/metabolism , Thiophenes/metabolism , Animals , Base Sequence , Binding Sites , Cell Line , Chromatin Immunoprecipitation , DNA Primers , Fluorescence Resonance Energy Transfer , Humans , Ligands , Mice , PPAR delta/antagonists & inhibitors , PPAR-beta/antagonists & inhibitors , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...