Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 11(2): R40, 2009.
Article in English | MEDLINE | ID: mdl-19291304

ABSTRACT

INTRODUCTION: In the present study, we investigated the ability of microparticles isolated from synovial fluids from patients with rheumatoid arthritis or osteoarthritis to induce the synthesis and release of key cytokines of B-lymphocyte modulation such as B cell-activating factor, thymic stroma lymphopoietin, and secretory leukocyte protease inhibitor by rheumatoid fibroblast-like synoviocytes. METHODS: Microparticles were analyzed in synovial fluids from patients with rheumatoid arthritis, osteoarthritis, microcristalline arthritis, and reactive arthritis. In addition, microparticle release after activation from various cell lines (CEM lymphocyte and THP-1 cells) was assessed. Microparticles were isolated by differential centrifugation, and quantitative determinations were carried out by prothrombinase assay after capture on immobilized annexin V. B cell-activating factor, thymic stroma lymphopoietin, and secretory leukocyte protease inhibitor release was evaluated by enzyme-linked immunosorbent assay. RESULTS: Microparticles isolated from synovial fluids obtained from rheumatoid arthritis and osteoarthritis patients or microparticles derived from activated THP-1 cells were able to induce B cell-activating factor, thymic stroma lymphopoietin, and secretory leukocyte protease inhibitor release by rheumatoid arthritis fibroblast-like synoviocytes. Conversely, CEM-lymphocytes-derived microparticles generated by treatment with a combination of PHA, PMA and Adt-D did not promote the release of B cell-activating factor but favored the secretion of thymic stroma lymphopoietin and secretory leukocyte protease inhibitor by rheumatoid arthritis fibrobast-like synoviocytes. However, microparticles isolated from actinomycin D-treated CEM lymphocytes were not able to induce B cell-activating factor, thymic stroma lymphopoietin, or secretory leukocyte protease inhibitor release, indicating that microparticles derived from apoptotic T cells do not function as effectors in B-cell activation. CONCLUSIONS: These results demonstrate that microparticles are signalling structures that may act as specific conveyors in the triggered induction and amplification of autoimmunity. This study also indicates that microparticles have differential effects in the crosstalk between B lymphocytes and target cells of autoimmunity regarding the parental cells from which they derive.


Subject(s)
Arthritis, Rheumatoid/immunology , Cell-Derived Microparticles/immunology , Synovial Fluid/immunology , Aged , Aged, 80 and over , B-Cell Activating Factor/biosynthesis , B-Cell Activating Factor/immunology , B-Lymphocytes/immunology , Cytokines/biosynthesis , Cytokines/immunology , Female , Fibroblasts/immunology , Humans , Interleukin-6/biosynthesis , Interleukin-6/immunology , Interleukin-8/biosynthesis , Interleukin-8/immunology , Lymphocyte Activation/immunology , Male , Middle Aged , Receptor Cross-Talk/immunology , Secretory Leukocyte Peptidase Inhibitor/biosynthesis , Secretory Leukocyte Peptidase Inhibitor/immunology , Synovial Fluid/cytology , Synovial Membrane/cytology , Synovial Membrane/immunology , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...