Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Chem Biodivers ; 21(5): e202400547, 2024 May.
Article in English | MEDLINE | ID: mdl-38507773

ABSTRACT

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (-)-9α-O-methylcubebin (2), (+)-9ß-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 µM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1-6 displayed activities with EC50 values ranging from 1.6 to 13.7 µM. In addition, the mammalian cytotoxicity of compounds 1-6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 µM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.


Subject(s)
Lignans , Piper , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Piper/chemistry , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Structure-Activity Relationship , Parasitic Sensitivity Tests , Fibroblasts/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Cell Survival/drug effects
2.
Chem Biodivers, v. 21, n. 5, e202400547, mai. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5306

ABSTRACT

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (−)-9α-O-methylcubebin (2), (+)-9β-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 μM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1–6 displayed activities with EC50 values ranging from 1.6 to 13.7 μM. In addition, the mammalian cytotoxicity of compounds 1–6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 μM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.

3.
Chem Biodivers ; 20(9): e202300947, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37539983

ABSTRACT

This review provides the first comprehensive appraisal of bioactive compounds and their biological activities in Persea species from 1950 to 2023. Relevant articles from reputable databases, including PubMed, Web of Science, Science Direct and Google Scholar were collected, leading to the isolation of about 141 metabolite compounds, mainly flavonoids, terpenoids, fatty alcohols, lignoids, and γ-lactone derivatives. These compounds exhibit diverse biological activities, including insecticidal, antifeedant, nematicidal, antibacterial, antifungal, antiviral, cytotoxic, anti-inflammatory, and antioxidant properties. The review emphasizes the significant chemical and pharmacological potential of different Persea species, encouraging further research in various fields and medicine. Valuable insights into potential applications of Persea plants are provided.


Subject(s)
Persea , Plant Extracts , Ethnopharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Antifungal Agents , Phytochemicals/chemistry , Phytotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...