Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 109(17): 8452-61, 2005 May 05.
Article in English | MEDLINE | ID: mdl-16851992

ABSTRACT

The adsorption, thermal chemistry, and photoreaction dynamics of methyl iodide on the (2x2) magnetite termination of natural single-crystal hematite have been investigated by time-of-flight quadrupole mass spectrometry (TOF-QMS), temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). The methyl iodide thermal desorption spectra, taken after dosing the (2x2) surface at 100 K with CH(3)I, show a multiple-peak coverage-dependent behavior, consistent with the presence of several distinct adsorbed phases, along with defect-mediated dissociative chemisorption in the first monolayer. At >1 ML, methyl iodide forms a metastable physisorbed second layer, which desorbs at 148 K, but at higher coverage converts to a layer, which desorbs at 170 K. In the presence of low-fluence-pulse irradiation at 248 nm, angle-resolved TOF-QMS measurements show that 1.6 and 0.3 eV CH(3) fragments are ejected from the adsorbate surface; these fragments originate from direct photodissociation and dissociative photoinduced electron transfer, respectively. These energetic photoejected fragments have characteristic angular distributions peaked at approximately 0 degree with respect to the surface normal. These results and the coverage-dependent relative intensities suggest that the predominant orientation in the first monolayer of the adsorbed CH(3)I is normal to the crystal plane.

SELECTION OF CITATIONS
SEARCH DETAIL
...