Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 131(6): 2338-47, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19161282

ABSTRACT

Tazobactam, sulbactam, and clavulanic acid are the only beta-lactamase inhibitors in clinical use. Comparative inhibitory activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases conclude that tazobactam is superior to both clavulanic acid and sulbactam. Thus far, the majority of explanations for this phenomenon have relied on kinetic studies, which report differences in the ligands' apparent dissociation constants and number of turnovers before inactivation. Due their innate limitations, these investigations do not examine the identity of intermediates on the reaction pathway and relate them to the efficacy of the inhibitors. In the present study, the reactions between the three inhibitors and SHV-1 beta-lactamase have been examined in single crystals using a Raman microscope. The results show that tazobactam forms a predominant population of trans-enamine, a chemically inert species, with SHV-1, while clavulanate and sulbactam form a mixture of trans-enamine and two labile species, the cis-enamine and imine. The same reactions are then reexamined using a deacylation-deficient variant, SHV E166A, that has been used to trap acyl-enzyme intermediates for X-ray crystallographic analysis. Our Raman data show that significant differences exist between the wild-type and SHV E166A acyl-enzyme populations. Namely, compared to SHV-1, sulbactam shows significantly smaller populations of cis-enamine and imine in the E166A variant, while clavulanate exists almost exclusively as trans-enamine in the E166A active site. Using clavulanate as an example, we also show that Raman crystallography can provide novel information on the presence of multiple conformers or tautomers for intermediates within a complex reaction pathway. These insights caution against the interpretation of experimental data obtained with deacylation-deficient beta-lactamases to make mechanistic conclusions about inhibitors within the enzyme.


Subject(s)
Clavulanic Acid/chemistry , Penicillanic Acid/analogs & derivatives , Sulbactam/chemistry , beta-Lactamases/chemistry , Clavulanic Acid/pharmacology , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Imines/chemistry , Penicillanic Acid/chemistry , Penicillanic Acid/pharmacology , Quantum Theory , Spectrum Analysis, Raman , Sulbactam/pharmacology , Tazobactam , beta-Lactamase Inhibitors
2.
Biochemistry ; 47(13): 4094-101, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18324783

ABSTRACT

The clinically used inhibitors tazobactam and sulbactam are effective in the inhibition of activity of class A beta-lactamases, but not for class D beta-lactamases. The two inhibitors exhibit a complex multistep profile for their chemistry of inhibition with class A beta-lactamases. To compare the inhibition profiles for class A and D enzymes, the reactions were investigated within OXA-10 beta-lactamase (a class D enzyme) crystals using a Raman microscope. The favored reaction pathway appears to be distinctly different from that for class A beta-lactamases. In contrast to the case of class A enzymes that favor the formation of a key enamine species, the OXA-10 enzyme forms an alpha,beta-unsaturated acrylate (acid or ester). Quantum mechanical calculations support the likely product as the adduct of Ser115 to the acrylate. Few enamine-like species are formed by sulbactam or tazobactam with this enzyme. Taken together, our results show that the facile conversion of the initial imine, formed upon acylation of the active site Ser67, to the cis- and/or trans-enamine is disfavored. Instead, there is a significant population of the imine that could either experience cross-linking to a second nucleophile (e.g., Ser115) or give rise to the alpha,beta-unsaturated product and permanent inhibition. Alternatively, the imine can undergo hydrolysis to regenerate the catalytically active OXA-10 enzyme. This last process is the dominant one for class D beta-lactamases since the enzyme is not effectively inhibited. In contrast to sulbactam and tazobactam, the reactions between oxacillin or 6alpha-hydroxyisopropylpenicillinate (both substrates) and OXA-10 beta-lactamase appear much less complex. These compounds lead to a single acyl-enzyme species, the presence of which was confirmed by Raman and MALDI-TOF experiments.


Subject(s)
Crystallography/methods , Enzyme Inhibitors/pharmacology , Penicillanic Acid/analogs & derivatives , Spectrum Analysis, Raman/methods , Sulbactam/pharmacology , beta-Lactamase Inhibitors , Penicillanic Acid/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tazobactam , beta-Lactamases
3.
Biochemistry ; 46(31): 8980-7, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17630699

ABSTRACT

Sulbactam is a mechanism-based inhibitor of beta-lactamase enzymes used in clinical practice. It undergoes a complex series of chemical reactions in the active site that have been studied extensively in the past three decades. However, the actual species that gives rise to inhibition in a clinical setting has not been established. Recent studies by our group, using Raman microscopy and X-ray crystallography, have found that large quantities of enamine-based acyl-enzyme species are present within minutes in single crystals of SHV-1 beta-lactamases which can lead to significant inhibition. The enamines are formed by breakdown of the cyclic beta-lactam structures with further transformations leading to imine formation and subsequent isomerization to cis and/or trans enamines. Another favored form of inhibition arises from attack on the imine by a second nucleophilic amino acid side chain, e.g., from serine 130, to form a cross-linked species in the active site that can degrade to an acrylate-like species irreversibly bound to the enzyme. Thus, the imine is at a branch point on the reaction pathway. Using sulbactam and 6,6-dideuterated sulbactam we follow these alternate paths in WT and E166A SHV-1 beta-lactamase by means of Raman microscopic studies on single enzyme crystals. For the unlabeled sulbactam, the Raman data show the presence of an acrylate-like species, probably 3-serine acrylate, several hours after the reaction is started in the crystal. However, for the 6,6-dideutero analogue the acrylate signature appears on the time scale of minutes. The Raman signatures, principally an intense feature near 1530 cm-1, are assigned based on quantum mechanical calculations on model compounds that mimic acrylate species in the active site. The different time scales observed for acrylate-like product formation are ascribed to different rates of reaction involving the imine intermediate. It is proposed that for the unsubstituted sulbactam the conversion from imine to enamine, which involves breaking a C-H bond, is aided by quantum mechanical tunneling. For the 6,6-dideutero-sulbactam the same step involves breaking a C-D bond, which has little or no assistance from tunneling. Consequently the conversion to enamines is slower, and a higher population of imine results, presenting the opportunity for the competing reaction with the second nucleophile, serine 130 being the prime candidate. The hydrolysis of the resulting cross-linked intermediate leads to the observed rapid buildup of the acrylate product in the Raman spectra from the dideutero analogue. The protocol used here, essentially running the reactions with the two forms of sulbactam in parallel, provides an element of control and enables us to conclude that, for the unsubstituted sulbactam, the formation of the cross-linked intermediate and the final irreversible acrylate product is not a significant route to inhibition of SHV-1.


Subject(s)
Acrylates/chemistry , Sulbactam/chemistry , beta-Lactamases/chemistry , Amino Acid Substitution , Catalytic Domain , Clavulanic Acid/chemistry , Crystallization , Enzyme Inhibitors/chemistry , Imines/chemistry , Kinetics , Molecular Structure , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/chemistry , Recombinant Proteins/chemistry , Serine/chemistry , Spectrum Analysis, Raman , Tazobactam , beta-Lactamases/genetics
4.
Biochemistry ; 46(29): 8689-99, 2007 Jul 24.
Article in English | MEDLINE | ID: mdl-17595114

ABSTRACT

Antibiotic resistance to beta-lactam compounds in Gram-negative bacteria such as Escherichia coli and Klebsiella pneumoniae is often mediated by beta-lactamase enzymes like TEM and SHV. Previously, a limited number of inhibitors have shown efficacy in combating such bacterial drug resistance. However, many Gram-negative pathogens have evolved inhibitor resistant forms of these hydrolytic enzymes. A single point mutation of the active site residue Ser130 to a Gly in either TEM or SHV results in resistance to amoxicillin and clavulanic acid, an important clinical beta-lactam-beta-lactamase inhibitor combination antibiotic. Previous structural and modeling studies of the S130G mutants of TEM and SHV have shown differences in how these two distinct but closely related enzymes compensate for the loss of the Ser130 residue. In the case of S130G SHV, a structure of tazobactam in the active site has suggested that the inhibitor preferentially assumes a cis-enamine intermediate form when the Ser130 hydroxyl is absent. Raman crystallographic studies of S130G SHV inhibited with tazobactam, sulbactam, clavulanic acid, and 2'-glutaroxy penem sulfone (SA2-13) were performed with the aim of identifying the type and amount of intermediate formed with each drug to understand the role of the S130G mutation in formation of the important enamine intermediates. It is demonstrated that with the exception of sulbactam, each compound forms observable trans-enamine intermediates. For S130G reacted with tazobactam, identical steady state levels of enamine are achieved when compared to those of wild-type (WT) or even deacylation deficient forms of the enzyme. With clavulanic acid, slightly smaller amounts of enamine are observed within the first 30 min of the reaction but are not significantly different than those for tazobactam. Thus, the resistance mutation does not substantially affect the amount of trans-enamine formed with clavulanic acid during the critical early time period of inhibition. This finding has important implications in the design of beta-lactamase inhibitors for drug resistant variants like S130G SHV.


Subject(s)
Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , beta-Lactam Resistance , beta-Lactamases/chemistry , beta-Lactams/chemistry , Clavulanic Acid/chemistry , Clavulanic Acid/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Glycine/chemistry , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/chemistry , Penicillanic Acid/metabolism , Serine/chemistry , Spectrum Analysis, Raman , Stereoisomerism , Tazobactam , beta-Lactamase Inhibitors
5.
J Am Chem Soc ; 128(40): 13235-42, 2006 Oct 11.
Article in English | MEDLINE | ID: mdl-17017804

ABSTRACT

beta-Lactamases are one of the major causes of antibiotic resistance in Gram negative bacteria. The continuing evolution of beta-lactamases that are capable of hydrolyzing our most potent beta-lactams presents a vexing clinical problem, in particular since a number of them are resistant to inhibitors. The efficient inhibition of these enzymes is therefore of great clinical importance. Building upon our previous structural studies that examined tazobactam trapped as a trans-enamine intermediate in a deacylation deficient SHV variant, we designed a novel penam sulfone derivative that forms a more stable trans-enamine intermediate. We report here the 1.28 A resolution crystal structure of wt SHV-1 in complex with a rationally designed penam sulfone, SA2-13. The compound is covalently bound to the active site of wt SHV-1 similar to tazobactam yet forms an additional salt-bridge with K234 and hydrogen bonds with S130 and T235 to stabilize the trans-enamine intermediate. Kinetic measurements show that SA2-13, once reacted with SHV-1 beta-lactamase, is about 10-fold slower at being released from the enzyme compared to tazobactam. Stabilizing the trans-enamine intermediate represents a novel strategy for the rational design of mechanism-based class A beta-lactamase inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Penicillanic Acid/analogs & derivatives , Sulfones/chemistry , beta-Lactamase Inhibitors , Amines/chemistry , Binding Sites , Crystallography, X-Ray , Drug Design , Drug Stability , Enzyme Inhibitors/pharmacology , Kinetics , Models, Molecular , Penicillanic Acid/chemistry , Penicillanic Acid/pharmacology , Protein Conformation , Sulfones/chemical synthesis , Sulfones/pharmacology , Tazobactam , beta-Lactamases/chemistry
6.
Biochemistry ; 45(39): 11895-904, 2006 Oct 03.
Article in English | MEDLINE | ID: mdl-17002290

ABSTRACT

The objective of this study was to determine the molecular factors that lead to beta-lactamase inhibitor resistance for the M69V variant in SHV-1 beta-lactamase. With mechanism-based inhibitors, the beta-lactamase forms an acyl-enzyme intermediate that consists of a trans-enamine derivative in the active site. This study focuses on these intermediates by introducing the E166A mutation that greatly retards deacylation. Thus, by comparing the properties of the E166A and M69V/E166A forms, we can explore the consequences of the resistance mutation at the level of the enamine acyl-enzyme forms. The reactions between the beta-lactamase and the inhibitors tazobactam, sulbactam, and clavulanic acid are followed in single crystals of the enzymes by using a Raman microscope. The resulting Raman difference spectroscopic data provide detailed information about conformational events involving the enamine species as well as an estimate of their populations. The Raman difference spectra for each of the inhibitors in the E166A and M69V/E166A variants are very similar. In particular, detailed analysis of the main enamine Raman vibration near 1595 cm(-1) reveals that the structure and flexibility of the enamine fragments are essentially identical for each of the three inhibitors in E166A and in the M69V/E166A double mutant. This finding is in accord with the X-ray-derived structures, presented herein at 1.6-1.75 A resolution, of the trans-enamine intermediates formed by the three inhibitors in M69V/E166A. However, a comparison of Raman results for M69V/E166A and E166A shows that the M69V mutation results in a 40%, 25%, and negligible reductions in the enamine population when the beta-lactamase crystals are soaked in 5 mM tazobactam, clavulanic acid, and sulbactam solutions, respectively. The levels of enamine from tazobactam and clavulanic acid can be increased by increasing the concentrations of inhibitor in the mother liquor. Thus, the sensitivity of population levels to the inhibitor concentration in the mother liquor focuses attention on the properties of the encounter complex preceding acylation. It is proposed that for small ligands, such as tazobactam, sulbactam, and clavulanic acid, the positioning of the lactam ring in the active site in the correct orientation for acylation is only one of a number of poorly defined conformations. For tazobactam and clavulanic acid, the correctly oriented encounter complex is even less likely in the M69V variant, leading to a reduction in the level of inhibition of the enzyme via formation of the acyl-enzyme intermediate and the onset of resistance. Analysis of the X-ray structures of the three intermediates in M69V/E166A demonstrates that, compared to the structures for the E166A form, the oxyanion hole becomes smaller, providing one explanation for why acylation may be less efficient following the M69V substitution.


Subject(s)
Amino Acid Substitution , Enzyme Inhibitors/chemistry , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , Klebsiella pneumoniae/enzymology , beta-Lactamase Inhibitors , Binding Sites/genetics , Catalysis , Crystallography, X-Ray/methods , Drug Resistance, Bacterial/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/genetics , Mutation, Missense , Protein Binding , Protein Structure, Tertiary , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism
7.
J Biol Chem ; 280(41): 34900-7, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16055923

ABSTRACT

Antibiotic resistance mediated by constantly evolving beta-lactamases is a serious threat to human health. The mechanism of inhibition of these enzymes by therapeutic beta-lactamase inhibitors is probed using a novel approach involving Raman microscopy and x-ray crystallography. We have presented here the high resolution crystal structures of the beta-lactamase inhibitors sulbactam and clavulanic acid bound to the deacylation-deficient E166A variant of SHV-1 beta-lactamase. Our previous Raman measurements have identified the trans-enamine species for both inhibitors and were used to guide the soaking time and concentration to achieve full occupancy of the active sites. The two inhibitor-bound x-ray structures revealed a linear trans-enamine intermediate covalently attached to the active site Ser-70 residue. This intermediate was thought to play a key role in the transient inhibition of class A beta-lactamases. Both the Raman and x-ray data indicated that the clavulanic acid intermediate is decarboxylated. When compared with our previously determined tazobactam-bound inhibitor structure, our new inhibitor-bound structures revealed an increased disorder in the tail region of the inhibitors as well as in the enamine skeleton. The x-ray crystallographic observations correlated with the broadening of the O-C=C-N (enamine) symmetric stretch Raman band near 1595 cm(-1). Band broadening in the sulbactam and clavulanic acid inter-mediates reflected a heterogeneous conformational population that results from variations of torsional angles in the O-(C=O)-C=C=NH-C skeleton. These observations led us to conclude that the conformational stability of the trans-enamine form is critical for their transient inhibitory efficacy.


Subject(s)
Clavulanic Acid/pharmacology , Sulbactam/pharmacology , beta-Lactamases/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Resistance, Bacterial , Enzyme Inhibitors/pharmacology , Klebsiella pneumoniae/metabolism , Models, Chemical , Models, Molecular , Mutation , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/pharmacology , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Serine/chemistry , Spectrum Analysis, Raman , Tazobactam , Time Factors , X-Rays , beta-Lactam Resistance
8.
Biochemistry ; 43(4): 843-8, 2004 Feb 03.
Article in English | MEDLINE | ID: mdl-14744126

ABSTRACT

Many pathogenic bacteria develop antibiotic resistance by utilizing beta-lactamases to degrade penicillin-like antibiotics. A commonly prescribed mechanism-based inhibitor of beta-lactamases is tazobactam, which can function either irreversibly or in a transient manner. We have demonstrated previously that the reaction between tazobactam and a deacylation deficient variant of SHV-1 beta-lactamase, E166A, could be followed in single crystals using Raman microscopy [Helfand, M. S., et al. (2003) Biochemistry 42, 13386-13392]. The Raman data show that maximal populations of an enamine-like intermediate occur 20-30 min after "soaking in" has commenced. By flash-freezing crystals in this time frame, we were able to trap the enamine species. The resulting 1.63 A resolution crystal structure revealed tazobactam covalently bound in the trans-enamine intermediate state with close to 100% occupancy in the active site. The Raman data also indicated that tazobactam forms a larger population of enamine than sulbactam or clavulanic acid does and that tazobactam's intermediate is also the most long-lived. The crystal structure provides a rationale for this finding since only tazobactam is able to form favorable intra- and intermolecular interactions in the active site that stabilize this trans-enamine intermediate. These interactions involve both the sulfone and triazolyl groups that distinguish tazobactam from clavulanic acid and sulbactam, respectively. The observed stabilization of the transient intermediate of tazobactam is thought to contribute to tazobactam's superior in vitro and in vivo clinical efficacy. Understanding the structural details of differing inhibitor effectiveness can aid the design of improved mechanism-based beta-lactamase inhibitors.


Subject(s)
Alanine , Glutamic Acid , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/chemistry , beta-Lactamase Inhibitors , beta-Lactamases/chemistry , Acylation , Alanine/genetics , Binding Sites , Crystallography, X-Ray , Glutamic Acid/genetics , Models, Molecular , Molecular Conformation , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Spectrum Analysis, Raman , Tazobactam , beta-Lactamases/genetics
9.
Biochemistry ; 42(46): 13386-92, 2003 Nov 25.
Article in English | MEDLINE | ID: mdl-14621983

ABSTRACT

The reactions between three clinically relevant inhibitors, tazobactam, sulbactam, and clavulanic acid, and SHV beta-lactamase (EC 3.5.2.6) have been followed in single crystals using a Raman microscope. The data are far superior to those obtained for the enzyme in aqueous solution and allow us to identify species on the reaction pathway and to measure the rates of the accumulation and decay of these species. A key intermediate on the reaction pathway is an acyl enzyme formed between Ser70 and the lactam ring's C=O group. By using the E166A deacylation deficient variant of the enzyme, we were able to focus on the process of acyl enzyme formation. The Raman data show that all three inhibitors form an enamine-type acyl enzyme reaching maximal populations at 10, 22, and 29 min for sulbactam, clavulanic acid, and tazobactam, respectively. The enamine intermediate exhibits a characteristic and relatively intense band near 1595 cm(-1) due to a stretching motion of the O=C-C=C-NH moiety that shifts to lower frequency upon NH <--> ND exchange. This feature was used to follow the kinetics of enamine buildup and decay in the crystal. Quantum mechanical calculations support the assignment of the 1595 cm(-1) band, as well as several other bands, to a trans-enamine species. The Raman data also demonstrate that the lactam ring opens prior to enamine formation since the lactam ring carbonyl (C=O) peak disappears prior to the appearance of the enamine 1595 cm(-1) band. Tazobactam appears to form approximately twice as much enamine intermediate as sulbactam and clavulanic acid, which correlates with its superior performance in the clinic, a finding that may bear on future drug design.


Subject(s)
Enzyme Inhibitors/metabolism , Penicillanic Acid/analogs & derivatives , Spectrum Analysis, Raman/methods , beta-Lactamase Inhibitors , Amines/chemistry , Amines/metabolism , Amino Acid Substitution , Clavulanic Acid/chemistry , Clavulanic Acid/metabolism , Clavulanic Acid/pharmacology , Crystallization , Deuterium Oxide/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Kinetics , Microscopy , Models, Molecular , Penicillanic Acid/chemistry , Penicillanic Acid/metabolism , Penicillanic Acid/pharmacology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sulbactam/chemistry , Sulbactam/metabolism , Sulbactam/pharmacology , Tazobactam , Water/chemistry , beta-Lactamases/chemistry , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...