Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Phys ; 19(12): 1927-1935, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38831923

ABSTRACT

The cell nucleus is enveloped by a complex membrane, whose wrinkling has been implicated in disease and cellular aging. The biophysical dynamics and spectral evolution of nuclear wrinkling during multicellular development remain poorly understood due to a lack of direct quantitative measurements. Here, we characterize the onset and dynamics of nuclear wrinkling during egg development in the fruit fly when nurse cell nuclei increase in size and display stereotypical wrinkling behavior. A spectral analysis of three-dimensional high-resolution live imaging data from several hundred nuclei reveals a robust asymptotic power-law scaling of angular fluctuations consistent with renormalization and scaling predictions from a nonlinear elastic shell model. We further demonstrate that nuclear wrinkling can be reversed through osmotic shock and suppressed by microtubule disruption, providing tuneable physical and biological control parameters for probing mechanical properties of the nuclear envelope. Our findings advance the biophysical understanding of nuclear membrane fluctuations during early multicellular development.

2.
Phys Rev Lett ; 127(14): 144503, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652186

ABSTRACT

Microscale Janus emulsions represent a versatile material platform for dynamic refractive, reflective, and light-emitting optical components. Here, we present a mechanism for droplet actuation that exploits thermocapillarity. Using optically induced thermal gradients, an interfacial tension differential is generated across the surfactant-free internal capillary interface of Janus droplets. The interfacial tension differential causes droplet-internal Marangoni flows and a net torque, resulting in a predictable and controllable reorientation of the droplets. The effect can be quantitatively described with a simple model that balances gravitational and thermal torques. Occurring in small thermal gradients, these optothermally induced Marangoni dynamics represent a promising mechanism for controlling droplet-based micro-optical components.

3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34417290

ABSTRACT

Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.


Subject(s)
Algorithms , Cell Membrane/metabolism , Oocytes/metabolism , Quantum Theory , Starfish/physiology , rho GTP-Binding Proteins/metabolism , Animals , Oocytes/cytology
4.
Development ; 148(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34124762

ABSTRACT

During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described Myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch or maintain their shape. We show that the Myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The Myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.


Subject(s)
Actins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , rho GTP-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , Actomyosin , Animals , Cell Cycle Proteins , Cell Shape , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , GTPase-Activating Proteins/metabolism , Morphogenesis/physiology , Myosin Type II/metabolism , rho GTP-Binding Proteins/genetics
5.
Eur Phys J E Soft Matter ; 39(6): 61, 2016 06.
Article in English | MEDLINE | ID: mdl-27329535

ABSTRACT

While free scroll rings are non-stationary objects that either grow or contract with time, spatial confinement can have a large impact on their evolution reaching from significant lifetime extension (J.F. Totz, H. Engel, O. Steinbock, New J. Phys. 17, 093043 (2015)) up to formation of stable stationary and breathing pacemakers (A. Azhand, J.F. Totz, H. Engel, EPL 108, 10004 (2014)). Here, we explore the parameter range in which the interaction between an axis-symmetric scroll ring and a confining planar no-flux boundary can be studied experimentally in transparent gel layers supporting chemical wave propagation in the photosensitive variant of the Belousov-Zhabotinsky medium. Based on full three-dimensional simulations of the underlying modified complete Oregonator model for experimentally realistic parameters, we determine the conditions for successful initiation of scroll rings in a phase diagram spanned by the layer thickness and the applied light intensity. Furthermore, we discuss whether the illumination-induced excitability gradient due to Lambert-Beer's law as well as a possible inclination of the filament plane with respect to the no-flux boundary can destabilize the scroll ring.

6.
Article in English | MEDLINE | ID: mdl-26382466

ABSTRACT

Chemical oscillators with a broad frequency distribution are photochemically coupled in network topologies. Experiments and simulations show that the network synchronization occurs by phase-lag synchronization of clusters of oscillators with zero- or nearly zero-lag synchronization. Symmetry also plays a role in the synchronization, the extent of which is explored as a function of coupling strength, frequency distribution, and the highest frequency oscillator location. The phase-lag synchronization occurs through connected synchronized clusters, with the highest frequency node or nodes setting the frequency of the entire network. The synchronized clusters successively "fire," with a constant phase difference between them. For low heterogeneity and high coupling strength, the synchronized clusters are made up of one or more clusters of nodes with the same permutation symmetries. As heterogeneity is increased or coupling strength decreased, the phase-lag synchronization occurs partially through clusters of nodes sharing the same permutation symmetries. As heterogeneity is further increased or coupling strength decreased, partial synchronization and, finally, independent unsynchronized oscillations are observed. The relationships between these classes of behavior are explored with numerical simulations, which agree well with the experimentally observed behavior.


Subject(s)
Models, Chemical , Periodicity , Computer Simulation , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...