Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605172

ABSTRACT

Multiscale neuroscience conceptualizes mental illness as arising from aberrant interactions across and within multiple biopsychosocial scales. We leverage this framework to propose a multiscale disease progression model of psychosis, in which hippocampal-cortical dysconnectivity precedes impairments in episodic memory and social cognition, which lead to more severe negative symptoms and lower functional outcome. As psychosis represents a heterogeneous collection of biological and behavioral alterations that evolve over time, we further predict this disease progression for a subtype of the patient sample, with other patients showing normal-range performance on all variables. We sampled data from two cross-sectional datasets of first- and multi-episode psychosis, resulting in a sample of 163 patients and 119 non-clinical controls. To address our proposed disease progression model and evaluate potential heterogeneity, we applied a machine-learning algorithm, SuStaIn, to the patient data. SuStaIn uniquely integrates clustering and disease progression modeling and identified three patient subtypes. Subtype 0 showed normal-range performance on all variables. In comparison, Subtype 1 showed lower episodic memory, social cognition, functional outcome, and higher negative symptoms, while Subtype 2 showed lower hippocampal-cortical connectivity and episodic memory. Subtype 1 deteriorated from episodic memory to social cognition, negative symptoms, functional outcome to bilateral hippocampal-cortical dysconnectivity, while Subtype 2 deteriorated from bilateral hippocampal-cortical dysconnectivity to episodic memory and social cognition, functional outcome to negative symptoms. This first application of SuStaIn in a multiscale psychiatric model provides distinct disease trajectories of hippocampal-cortical connectivity, which might underlie the heterogeneous behavioral manifestations of psychosis.

2.
Cereb Cortex ; 33(19): 10341-10354, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37557917

ABSTRACT

There is robust evidence for sex differences in domain-specific cognition, where females typically show an advantage for verbal memory, whereas males tend to perform better in spatial memory. Sex differences in brain connectivity are well documented and may provide insight into these differences. In this study, we examined sex differences in cognition and structural covariance, as an index of morphometric connectivity, of a large healthy sample (n = 28,821) from the UK Biobank. Using T1-weighted magnetic resonance imaging scans and regional cortical thickness values, we applied jackknife bias estimation and graph theory to obtain subject-specific measures of structural covariance, hypothesizing that sex-related differences in brain network global efficiency, or overall covariance, would underlie cognitive differences. As predicted, females demonstrated better verbal memory and males showed a spatial memory advantage. Females also demonstrated faster processing speed, with no observed sex difference in executive functioning. Males showed higher global efficiency, as well as higher regional covariance (nodal strengths) in both hemispheres relative to females. Furthermore, higher global efficiency in males mediated sex differences in verbal memory and processing speed. Findings contribute to an improved understanding of how biological sex and differences in cognition are related to morphometric connectivity as derived from graph-theoretic methods.


Subject(s)
Biological Specimen Banks , Sex Characteristics , Humans , Female , Male , Cognition , Brain/diagnostic imaging , Brain/pathology , Spatial Memory , United Kingdom , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...