Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830885

ABSTRACT

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Subject(s)
Disease Progression , Glioma , Heterogeneous-Nuclear Ribonucleoprotein Group C , Interleukin-1 Receptor-Associated Kinases , MAP Kinase Signaling System , RNA, Messenger , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Cell Line, Tumor , MAP Kinase Signaling System/genetics , Mice , RNA Stability/genetics , Mice, Nude , Animals , Gene Expression Regulation, Neoplastic , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Prognosis
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718847

ABSTRACT

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Subject(s)
Amino Acids, Branched-Chain , Apoptosis , GTP Phosphohydrolases , Glioblastoma , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , GTP Phosphohydrolases/metabolism , Animals , Amino Acids, Branched-Chain/metabolism , Cell Line, Tumor , Mice , Mitochondrial Proteins/metabolism , Ubiquitin/metabolism , Signal Transduction/drug effects , Male , Ubiquitination/drug effects , Reactive Oxygen Species/metabolism
3.
Breast Cancer Res ; 26(1): 10, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217030

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) remains the most challenging subtype of breast cancer and lacks definite treatment targets. Aerobic glycolysis is a hallmark of metabolic reprogramming that contributes to cancer progression. PFKP is a rate-limiting enzyme involved in aerobic glycolysis, which is overexpressed in various types of cancers. However, the underlying mechanisms and roles of the posttranslational modification of PFKP in TNBC remain unknown. METHODS: To explore whether PFKP protein has a potential role in the progression of TNBC, protein levels of PFKP in TNBC and normal breast tissues were examined by CPTAC database analysis, immunohistochemistry staining (IHC), and western blotting assay. Further CCK-8 assay, colony formation assay, EDU incorporation assay, and tumor xenograft experiments were used to detect the effect of PFKP on TNBC progression. To clarify the role of the USP5-PFKP pathway in TNBC progression, ubiquitin assay, co-immunoprecipitation (Co-IP), mass spectrometry-based protein identification, western blotting assay, immunofluorescence microscopy, in vitro binding assay, and glycolysis assay were conducted. RESULTS: Herein, we showed that PFKP protein was highly expressed in TNBC, which was associated with TNBC progression and poor prognosis of patients. In addition, we demonstrated that PFKP depletion significantly inhibited the TNBC progression in vitro and in vivo. Importantly, we identified that PFKP was a bona fide target of deubiquitinase USP5, and the USP5-mediated deubiquitination and stabilization of PFKP were essential for cancer cell aerobic glycolysis and TNBC progression. Moreover, we found a strong positive correlation between the expression of USP5 and PFKP in TNBC samples. Notably, the high expression of USP5 and PFKP was significantly correlated with poor clinical outcomes. CONCLUSIONS: Our study established the USP5-PFKP axis as an important regulatory mechanism of TNBC progression and provided a rationale for future therapeutic interventions in the treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Glycolysis , Heterografts , Transplantation, Heterologous , Triple Negative Breast Neoplasms/pathology
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 34-43, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38151998

ABSTRACT

Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Mitochondrial Dynamics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Apoptosis , A549 Cells , Proteins , Metformin/pharmacology , Adenosine Triphosphate , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , GTP Phosphohydrolases/genetics
5.
J Nanobiotechnology ; 21(1): 497, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124097

ABSTRACT

Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor-donor acceptor' donor-acceptor (A-DA'D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment. Scheme 1 PYT enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Polymers , Neoplasms/drug therapy , Phototherapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
6.
Free Radic Biol Med ; 205: 47-61, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37253410

ABSTRACT

Retinal ischemia/reperfusion (I/R) injury is a common pathological process responsible for cellular damage in glaucoma, diabetic retinopathy and hypertensive retinopathy. Metformin is a biguanide drug that exerts strong effects on multiple diseases. This study aims to evaluate the protective effect of metformin against retinal I/R injury and its underlying mechanism. I/R induced reduction in retina thickness and cell number in ganglion cell layer, and metformin alleviated I/R-induced retinal injury. Both retinal I/R and simulated ischemia/reperfusion (SIR) in R28 cells down-regulated expression of mitochondrial fusion protein Mfn2 and OPA1, which led to mitochondrial fission. Metformin also alleviated damage in R28 cells, and reversed the alteration in Mfn2 and OPA1, mitochondrial fission and mitochondrial membrane potential (MMP) disruption-induced by I/R or SIR as well. Intriguingly, inhibition of AMPK by compound C or siRNA prevented metformin-mediated up-regulation of Mfn2 and OPA1. Compound C and knockdown of Mfn2 or OPA1 dramatically alleviated the protective effect of metformin against intracellular ROS generation, MMP disruption, mitochondrial fission and loss of RGCs in ganglion cell layer induced by SIR or I/R. Moreover, scavenging mitochondrial ROS (mito-ROS) by mito-TEMPO exerted the similar protection against I/R-induced retinal injury or SIR-induced damage in R28 cells as metformin. Our data show for the first time that metformin protects against retinal I/R injury through AMPK-mediated mitochondrial fusion and the decreased mito-ROS generation. These findings might also repurpose metformin as a therapeutic agent for retinal I/R injury.


Subject(s)
Metformin , Reperfusion Injury , Humans , Metformin/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Mitochondrial Dynamics , Reactive Oxygen Species/metabolism , Retina/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Apoptosis
7.
Free Radic Biol Med ; 194: 209-219, 2023 01.
Article in English | MEDLINE | ID: mdl-36493984

ABSTRACT

Age-related macular degeneration is a common cause of blindless among the aged, which can mainly be attributed to oxidative stress and dysregulated autophagy in retinal pigment epithelium cells. Lactate was reported to act as a signaling molecule and exerted beneficial effect against oxidative stress. This study aims to investigate the protective effect of lactate against oxidative stress-induced retinal degeneration. Here, H2O2-induced oxidative stress cell model and sodium iodate-induced mice retinal degeneration model were established. It was found that H2O2 inhibited cell viability in ARPE-19 cells and sodium iodate induced deterioration of retinal pigment epithelium as well as apoptosis in retina. Pretreatment with lactate alleviated oxidative stress-induced cell death and retinal degeneration. Molecularly, lactate activated autophagy by up-regulating the ratio of LC3II/I, increased formation of LC3 puncta and autophagic vacuole. Further, lactate prevented H2O2-induced mitochondrial fission and maintained mitochondrial function by alleviating H2O2-induced mitochondrial membrane potential disruption and intracellular ROS generation. In contrast, application of 3-methyladenine, an inhibitor of autophagy, effectively weakened the protective effect of lactate against oxidative stress in vivo and in vitro. Taken together, all data in this study indicate that lactate protects against oxidative stress-induced retinal degeneration and preserves mitochondrial function by activating autophagy.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Reactive Oxygen Species/metabolism , Lactic Acid/metabolism , Lactic Acid/pharmacology , Hydrogen Peroxide/metabolism , Oxidative Stress , Retinal Pigment Epithelium/metabolism , Autophagy
8.
Mol Cell Biochem ; 478(7): 1519-1531, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36413334

ABSTRACT

Triple negative breast cancer (TNBC) is a kind of refractory cancer with poor response to conventional chemotherapy. Recently, the combination of baicalein and doxorubicin was reported to exert a synergistic antitumor effect on breast cancer. However, the underlying mechanism how baicalein sensitizes breast cancer cells to doxorubicin remains to be elucidated. Here, it was found that 20 µM baicalein increased the autophagy markers including the ratio of LC3B II/I, GFP-LC3 punctate aggregates and down-regulation of p62 expression, and up-regulated mitophagy marker PINK1 and Parkin in TNBC MDA-MB-231 cells as well. In contrast, doxorubicin decreased the levels of autophagy markers, and significantly up-regulated CDK1 in MDA-MB-231 cells. Pretreatment with baicalein markedly inhibited the doxorubicin-induced decrease in autophagy markers and up-regulation of CDK1, which was reversed by the autophagy inhibitor 3-Methyladenine. Moreover, baicalein alleviated the doxorubicin-induced expression and phosphorylation (at Ser616) of mitochondrial fission protein Drp1. Intriguingly, the autophagy inhibitor 3-Methyladenine also significantly weakened the effect of baicalein on doxorubicin-induced viability decrease and apoptosis in MDA-MB-231 cells. Taken together, our data indicate that baicalein improves the chemosensitivity of TNBC cells to doxorubicin through promoting the autophagy-mediated down-regulation of CDK1, also suggest a novel strategy for prevention of TNBC in the future.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , MDA-MB-231 Cells , Down-Regulation , Cell Line, Tumor , Doxorubicin/pharmacology , Autophagy , Apoptosis , Cell Proliferation , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/pharmacology
9.
Front Oncol ; 12: 956190, 2022.
Article in English | MEDLINE | ID: mdl-36387221

ABSTRACT

Gastric cancer (GC) is one of the most common tumors worldwide, and cisplatin is a standard chemotherapeutic reagent for GC treatment. However, chemoresistance is an inherent challenge which limits its application and effectiveness in clinic. This study aims to investigate the mechanism of metformin-induced cisplatin resistance in GC. Intriguingly, the upregulation of mitophagy markers, mitochondrial fission, autophagy and mitophagosome were observed in SGC-7901/DDP cells compared to those in the SGC-7901 cells. Treatment with metformin significantly increased mitochondrial fission and mitophagy in both AGS and SGC-7901 cells, resulting in decreased ATP production, which unexpectedly protected GC cells against the cytotoxicity of cisplatin. In contrast, application of Chloroquine and 3-methyladenine, two inhibitors of autophagy, significantly alleviated the protective effect of metformin on SGC-7901 and AGS cells against cytotoxicity of cisplatin. Moreover, metformin also stimulated the phosphorylation of AMPK (Thr172) and increased the expression of mitophagy markers including Parkin and PINK1 in the AMPK signaling-dependent manner. Consistently, the cell viability and cell apoptosis assay showed that metformin-induced cisplatin resistance was prevented by knockdown of AMPKα1. Taken together, all data in this study indicate that metformin induced AMPK activation and PINK1/Parkin dependent mitophagy, which may contribute to the progression of cisplatin resistance in GC.

10.
Exp Eye Res ; 224: 109239, 2022 11.
Article in English | MEDLINE | ID: mdl-36067824

ABSTRACT

Oxidative stress plays a crucial role in the damage of retinal neuronal cells. Curcumin, the phytocompound, has anti-inflammatory and antioxidative properties. It was shown that curcumin exerted a beneficial effect on retinal neuronal cell survival. However, the role of mitochondrial dynamics in curcumin-mediated protective effect on retinal neuronal cells remains to be elucidated. Here, H2O2 was used to mimic the oxidative stress in retinal neuronal R28 cells. Drp1 and Mfn2 are key regulators of mitochondrial fission and fusion. 100 µM of H2O2 significantly increased the cleavage of caspase-3 and Drp1 expression, but downregulated the expression of Mfn2. Pretreatment with 5 µM curcumin effectively alleviated H2O2-induced alterations in the expression of Drp1 and Mfn2 and mitochondrial fission in R28 cells. In addition, curcumin and Drp1 knockdown prevented H2O2-induced intracellular ROS increment and mitochondrial membrane potential disruption. On the contrary, knockdown of Mfn2 diminished curcumin-mediated protection against ROS increment and mitochondrial membrane potential disruption after H2O2. Moreover, curcumin protected R28 cells against H2O2-induced PINK1 expression, mitophagy, caspase-3 cleavage and apoptosis. Knockdown of Mfn2 significantly alleviated the protective effect of curcumin on R28 cells after H2O2. Taken together, our data indicate that curcumin protects against oxidative stress-induced injury in retinal neuronal cells by promoting mitochondrial fusion.


Subject(s)
Curcumin , Mitochondrial Dynamics , Curcumin/pharmacology , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress , Apoptosis , Protein Kinases/metabolism , Protein Kinases/pharmacology
11.
Kaohsiung J Med Sci ; 38(5): 425-436, 2022 May.
Article in English | MEDLINE | ID: mdl-35050556

ABSTRACT

Cell division cycle 20 (CDC20) and microRNAs (miRNAs) are differentially expressed in non-small cell lung cancer (NSCLC). The current study aimed to investigate the role of miR-1321 and miR-7515 regulation in CDC20 during NSCLC development. CDC20 expression in paracancerous and tumor tissues was assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The relationship between CDC20 expression and prognosis of patients was analyzed using the TCGA database. The expression profile of CDC20 in healthy lung cells and NSCLC cells was detected using qRT-PCR and western blotting. After the knockdown of CDC20 in NSCLC cells, the cell proliferation, apoptosis, migration, invasion, and cell cycle changes were investigated by CCK8, EdU, flow cytometry, wound healing, and Transwell assays. The miRNAs targeting CDC20 were predicted using two bioinformatics websites and validated using dual-luciferase assays. CDC20 was enhanced in NSCLC tissues and cells, thus predicting the poor prognosis in NSCLC patients. After CDC20 inhibition, the malignant phenotype of NSCLC cells was reverted. miR-1321 and miR-7515 targeted CDC20 and exhibited the same anti-tumor effects as CDC20 silencing. Functional rescue experiments showed that CDC20 overexpression averted the anti-tumor effects of miR-1321 and miR-7515 on NSCLC cells. miR-1321 and miR-7515 inhibited NSCLC development by targeting CDC20. Thus, the current study has implications in NSCLC treatment and provides novel insights into NSCLC management.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Int J Cancer ; 147(1): 116-127, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31633798

ABSTRACT

Whether PD-L1-positive patients derive more overall survival benefit from PD-1/PD-L1 inhibitors in the treatment of advanced solid tumours is unclear. We systematically searched the PubMed, Cochrane library and EMBASE databases from January 1, 1966 to March 1, 2019, to identify randomised controlled trials of PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, atezolizumab, durvalumab and avelumab) that had available hazard ratios (HRs) for death according to PD-L1 status. A random-effects model was used to calculate the pooled overall survival (OS) HR and 95% CI among PD-L1-positive and PD-L1-negative patients. An interaction test was performed to evaluate the heterogeneity between the two estimates. A total of 24 randomised trials, involving 12,966 participants, fulfilled the inclusion criteria. An OS benefit of PD-1/PD-L1 inhibitors was found in both PD-L1-positive patients (HR, 0.65; 95% CI, 0.60-0.70) and PD-L1-negative patients (HR, 0.82; 95% CI, 0.74-0.91) even at the minimum cut-off value of 1%. Significant differences in the efficacy of PD-1/PD-L1 inhibitors between PD-L1-positive and PD-L1-negative patients were noted at different cut-off values. Moreover, there was a positive dose-response relationship between PD-L1 positivity and OS benefit (HR for 1%, 0.58, [0.50, 0.67]; 5%, 0.52 [0.43, 0.64]; 10%, 0.50 [0.40, 0.63]). Subgroup analyses showed that these results were generally consistent, regardless of study design, line of treatment, treatment type, tumour type, PD-L1 staining cell type and median follow-up time. We demonstrated that PD-1/PD-L1 inhibitors significantly improved OS in both PD-L1 positive and PD-L1 negative patients compared to controls, but the magnitude of benefit was clinically PD-L1-dependent.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/biosynthesis , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/immunology , Randomized Controlled Trials as Topic , Survival Rate
13.
BMC Cancer ; 19(1): 289, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30925904

ABSTRACT

BACKGROUND: The prognostic value of PKM2 and its correlation with tumour cell PD-L1 in lung adenocarcinoma (LUAD) is unclear. METHODS: A total of 506 lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) dataset and 173 LUAD tumour tissues from Jiangxi Cancer Hospital were used to analyse the correlation between PKM2 and PD-L1 expression. We further established a stable LUAD cell line with PKM2 knockdown and confirmed the association via Western blotting and flow cytometry analysis. Moreover, the prognostic values of PKM2 and PD-L1 were evaluated by the Kaplan-Meier method and Cox proportional hazards models. RESULTS: Based on the above two large cohorts, we found that PKM2 was significantly positively associated with PD-L1 expression (r = 0.132, P = 0.003 and r = 0.287, P < 0.001, respectively). Subsequently, we found that PKM2 knockdown substantially inhibited PD-L1 expression in the A549 LUAD cell line. Moreover, survival analysis showed that higher expression of PKM2 was correlated with significantly shorter overall survival (OS) and disease-free survival (DFS) in lung adenocarcinoma patients (P < 0.001 and P = 0.050, respectively). Subgroup analysis showed that lung adenocarcinoma patients who expressed high PKM2 and PD-L1 levels experienced the poorest OS and DFS. Additionally, multivariate analysis suggested that high PKM2 and PD-L1 expression was an independent prognostic indicator for worse OS and DFS (HR = 1.462, P < 0.001 and HR = 1.436, P = 0.004, respectively). CONCLUSIONS: Our results demonstrated that PKM2 regulated PD-L1 expression and was associated with poor outcomes in lung adenocarcinoma patients.


Subject(s)
Adenocarcinoma of Lung/metabolism , B7-H1 Antigen/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Adenocarcinoma of Lung/drug therapy , Adult , Aged , B7-H1 Antigen/analysis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Carrier Proteins/analysis , Carrier Proteins/genetics , Cell Line, Tumor , Disease-Free Survival , Female , Humans , Lung Neoplasms/drug therapy , Male , Membrane Proteins/analysis , Membrane Proteins/genetics , Middle Aged , Proportional Hazards Models , Thyroid Hormones/analysis , Thyroid Hormones/genetics , Thyroid Hormone-Binding Proteins
14.
Oncol Rep ; 37(4): 2161-2166, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28259998

ABSTRACT

Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.


Subject(s)
Carrier Proteins/metabolism , Hyaluronan Receptors/metabolism , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , Neoplastic Stem Cells/metabolism , Thyroid Hormones/metabolism , A549 Cells , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Hypoxia/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , RNA, Small Interfering/pharmacology , Radiotherapy , Thyroid Hormones/genetics , Up-Regulation , Thyroid Hormone-Binding Proteins
15.
Sci Rep ; 6: 34388, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677242

ABSTRACT

Neoadjuvant Chemotherapy has been used for the stage III of non-small cell lung cancer (NSCLC) and has shown good clinical effects. However, the survival benefits of radiation therapy added in induction regimens remains controversial. We therefore conducted a meta-analysis of the published clinical trials to quantitatively evaluate the benefit of preoperative chemoradiotherapy. After searching the database of Pubmed, CNKI, EMBASE, ESMO, The Cochrane Library databases, The American Society of Clinical Oncology and Clinical Trials.gov. Trials were selected for meta-analysis if they provided an independent assessment of neoadjuvant chemoradiation and neoadjuvant chemotherapy, odds ratio(OR) for tumor downstaging, mediastinal lymph nodes pathological complete response and local control, hazard ratios (HRs) for 5-year survival and progression-free survival were pooled by the stata software version 12.0. Twelve studies involving 2,724 patients were identified, tumor downstaging (p = 0.01), mediastinal lymph nodes pathological complete responses (p = 0.028) and local control (P = 0.002) were achieved, when compared with neoadjuvant chemotherapy. The meta-analysis demonstrated neither 5-year survival nor progression-free-survival benefit in survival from adding radiation. In conclusion, the addition of radiotherapy into chemotherapy was not superior to neoadjuvant chemotherapy. The higher quality of trials need be investigated combining with the histopathological type and genotyping of lung cancer by clinicians.

16.
PLoS One ; 11(5): e0152179, 2016.
Article in English | MEDLINE | ID: mdl-27195709

ABSTRACT

Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks.


Subject(s)
Myocardium/cytology , Stem Cells/radiation effects , Animals , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...