Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 555, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724614

ABSTRACT

Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. Learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences. Here, we show that anti-Hebbian spike-timing dependent plasticity (STDP), as observed at cortico-striatal synapses, can naturally lead to learning spike sequences. We design a spiking model of the striatal output neuron receiving spike patterns defined as sequential input from a fixed set of cortical neurons. We use a simple synaptic plasticity rule that combines anti-Hebbian STDP and non-associative potentiation for a subset of the presented patterns called rewarded patterns. We study the ability of striatal output neurons to discriminate rewarded from non-rewarded patterns by firing only after the presentation of a rewarded pattern. In particular, we show that two biological properties of striatal networks, spiking latency and collateral inhibition, contribute to an increase in accuracy, by allowing a better discrimination of partially overlapping sequences. These results suggest that anti-Hebbian STDP may serve as a biological substrate for learning sequences of spikes.


Subject(s)
Corpus Striatum , Learning , Neuronal Plasticity , Neuronal Plasticity/physiology , Learning/physiology , Corpus Striatum/physiology , Models, Neurological , Animals , Action Potentials/physiology , Neurons/physiology , Humans
2.
Chaos ; 33(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37874881

ABSTRACT

A variety of nonlinear models of biological systems generate complex chaotic behaviors that contrast with biological homeostasis, the observation that many biological systems prove remarkably robust in the face of changing external or internal conditions. Motivated by the subtle dynamics of cell activity in a crustacean central pattern generator (CPG), this paper proposes a refinement of the notion of chaos that reconciles homeostasis and chaos in systems with multiple timescales. We show that systems displaying relaxation cycles while going through chaotic attractors generate chaotic dynamics that are regular at macroscopic timescales and are, thus, consistent with physiological function. We further show that this relative regularity may break down through global bifurcations of chaotic attractors such as crises, beyond which the system may also generate erratic activity at slow timescales. We analyze these phenomena in detail in the chaotic Rulkov map, a classical neuron model known to exhibit a variety of chaotic spike patterns. This leads us to propose that the passage of slow relaxation cycles through a chaotic attractor crisis is a robust, general mechanism for the transition between such dynamics. We validate this numerically in three other models: a simple model of the crustacean CPG neural network, a discrete cubic map, and a continuous flow.

3.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33811087

ABSTRACT

Numerous studies have proposed that specific brain activity statistics provide evidence that the brain operates at a critical point, which could have implications for the brain's information processing capabilities. A recent paper reported that identical scalings and criticality signatures arise in a variety of different neural systems (neural cultures, cortical slices, anesthetized or awake brains, across both reptiles and mammals). The diversity of these states calls into question the claimed role of criticality in information processing. We analyze the methodology used to assess criticality and replicate this analysis for spike trains of two non-critical systems. These two non-critical systems pass all the tests used to assess criticality in the aforementioned recent paper. This analysis provides a crucial control (which is absent from the original study) and suggests that the methodology used may not be sufficient to establish that a system operates at criticality. Hence whether the brain operates at criticality or not remains an open question and it is of evident interest to develop more robust methods to address these questions.


Subject(s)
Brain , Wakefulness , Animals
4.
J Neurophysiol ; 123(5): 1583-1599, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32049596

ABSTRACT

Nervous system maturation occurs on multiple levels-synaptic, circuit, and network-at divergent timescales. For example, many synaptic properties mature gradually, whereas emergent network dynamics can change abruptly. Here we combine experimental and theoretical approaches to investigate a sudden transition in spontaneous and sensory evoked thalamocortical activity necessary for the development of vision. Inspired by in vivo measurements of timescales and amplitudes of synaptic currents, we extend the Wilson and Cowan model to take into account the relative onset timing and amplitudes of inhibitory and excitatory neural population responses. We study this system as these parameters are varied within amplitudes and timescales consistent with developmental observations to identify the bifurcations of the dynamics that might explain the network behaviors in vivo. Our findings indicate that the inhibitory timing is a critical determinant of thalamocortical activity maturation; a gradual decay of the ratio of inhibitory to excitatory onset time drives the system through a bifurcation that leads to a sudden switch of the network spontaneous activity from high-amplitude oscillations to a nonoscillatory active state. This switch also drives a change from a threshold bursting to linear response to transient stimuli, also consistent with in vivo observation. Thus we show that inhibitory timing is likely critical to the development of network dynamics and may underlie rapid changes in activity without similarly rapid changes in the underlying synaptic and cellular parameters.NEW & NOTEWORTHY Relying on a generalization of the Wilson-Cowan model, which allows a solid analytic foundation for the understanding of the link between maturation of inhibition and network dynamics, we propose a potential explanation for the role of developing excitatory/inhibitory synaptic delays in mediating a sudden switch in thalamocortical visual activity preceding vision onset.


Subject(s)
Cerebral Cortex/physiology , Electrophysiological Phenomena/physiology , Models, Theoretical , Nerve Net/physiology , Thalamus/physiology , Animals , Cerebral Cortex/growth & development , Humans , Nerve Net/growth & development , Thalamus/growth & development
5.
PLoS Comput Biol ; 14(8): e1006184, 2018 08.
Article in English | MEDLINE | ID: mdl-30106953

ABSTRACT

Hebbian plasticity describes a basic mechanism for synaptic plasticity whereby synaptic weights evolve depending on the relative timing of paired activity of the pre- and postsynaptic neurons. Spike-timing-dependent plasticity (STDP) constitutes a central experimental and theoretical synaptic Hebbian learning rule. Various mechanisms, mostly calcium-based, account for the induction and maintenance of STDP. Classically STDP is assumed to gradually emerge in a monotonic way as the number of pairings increases. However, non-monotonic STDP accounting for fast associative learning led us to challenge this monotonicity hypothesis and explore how the existence of multiple plasticity pathways affects the dynamical establishment of plasticity. To account for distinct forms of STDP emerging from increasing numbers of pairings and the variety of signaling pathways involved, we developed a general class of simple mathematical models of plasticity based on calcium transients and accommodating various calcium-based plasticity mechanisms. These mechanisms can either compete or cooperate for the establishment of long-term potentiation (LTP) and depression (LTD), that emerge depending on past calcium activity. Our model reproduces accurately the striatal STDP that involves endocannabinoid and NMDAR signaling pathways. Moreover, we predict how stimulus frequency alters plasticity, and how triplet rules are affected by the number of pairings. We further investigate the general model with an arbitrary number of pathways and show that depending on those pathways and their properties, a variety of plasticities may emerge upon variation of the number and/or the frequency of pairings, even when the outcome after large numbers of pairings is identical. These findings, built upon a biologically realistic example and generalized to other applications, argue that in order to fully describe synaptic plasticity it is not sufficient to record STDP curves at fixed pairing numbers and frequencies. In fact, considering the whole spectrum of activity-dependent parameters could have a great impact on the description of plasticity, and a better understanding of the engram.


Subject(s)
Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Neuronal Plasticity/physiology , Action Potentials , Animals , Calcium Channels/metabolism , Calcium Channels/physiology , Endocannabinoids/metabolism , Humans , Models, Theoretical , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology , Synapses/metabolism
6.
Proc Natl Acad Sci U S A ; 112(39): 12199-204, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26371318

ABSTRACT

The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. The loss of Lhx2 in cortical progenitors results in precocious radial glia differentiation and a temporal shift of cortical neurogenesis. We further investigated the underlying mechanisms at play and demonstrated that in the absence of Lhx2, the Wnt/ß-catenin pathway failed to maintain progenitor proliferation. We developed and applied a mathematical model that reveals how precocious neurogenesis affected cortical surface and thickness. Thus, we concluded that Lhx2 is required for ß-catenin function in maintaining cortical progenitor proliferation and controls the timing of cortical neurogenesis.


Subject(s)
Cerebral Cortex/embryology , Gene Expression Regulation, Developmental/genetics , LIM-Homeodomain Proteins/metabolism , Models, Neurological , Neurogenesis/genetics , Neurogenesis/physiology , Transcription Factors/metabolism , Animals , Computer Simulation , DNA Primers/genetics , Galactosides , Gene Expression Regulation, Developmental/physiology , HEK293 Cells , Humans , In Situ Hybridization , Indoles , LIM-Homeodomain Proteins/genetics , Luciferases , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
7.
J Comput Neurosci ; 31(3): 485-507, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21499739

ABSTRACT

In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.


Subject(s)
Action Potentials/physiology , Nerve Net/physiology , Neural Networks, Computer , Neurons/physiology , Animals , Humans , Linear Models , Markov Chains , Neural Inhibition/physiology , Stochastic Processes , Synaptic Transmission/physiology
8.
J Comput Neurosci ; 31(3): 453-84, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21384156

ABSTRACT

The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system.


Subject(s)
Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Behavior/physiology , Humans , Neural Networks, Computer , Nonlinear Dynamics , Statistics as Topic/methods , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...