Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Clin Electrophysiol ; 9(7 Pt 2): 1147-1157, 2023 07.
Article in English | MEDLINE | ID: mdl-37495323

ABSTRACT

BACKGROUND: Experimental evidence suggests genetic variation in 4q25/PITX2 modulates pulmonary vein (PV) myocardial sleeve length. Although PV sleeves are the main target of atrial fibrillation (AF) ablation, little is known about the association between different PV sleeve characteristics with ablation outcomes. OBJECTIVES: This study sought to evaluate the association between clinical and genetic (4q25) risk factors with PV sleeve length in humans, and to evaluate the association between PV sleeve length and recurrence after AF ablation. METHODS: In a prospective, observational study of patients undergoing de novo AF ablation, PV sleeve length was measured using electroanatomic voltage mapping before ablation. The sentinel 4q25 AF susceptibility single nucleotide polymorphism, rs2200733, was genotyped. The primary analysis tested the association between clinical and genetic (4q25) risk factors with PV sleeve length using a multivariable linear regression model. Covariates included age, sex, body mass index, height, and persistent AF. The association between PV sleeve length and atrial arrhythmia recurrence (>30 seconds) was tested using a multivariable Cox proportional hazards model. RESULTS: Between 2014 and 2019, 197 participants were enrolled (median age 63 years [IQR: 55 to 70 years], 133 male [67.5%]). In multivariable modeling, men were found to have PV sleeves 2.94 mm longer than women (95% CI: 0.99-4.90 mm; P < 0.001). Sixty participants (30.5%) had one 4q25 risk allele and 6 (3.1%) had 2 alleles. There was no association between 4q25 genotype and PV sleeve length. Forty-six participants (23.4%) experienced arrhythmia recurrence within 3 to 12 months, but there was no association between recurrence and PV sleeve length. CONCLUSIONS: Common genetic variation at 4q25 was not associated with PV sleeve length and PV sleeve length was not associated with ablation outcomes. Men did have longer PV sleeves than women, but more research is needed to define the potential clinical significance of this observation.


Subject(s)
Atrial Fibrillation , Pulmonary Veins , Female , Humans , Male , Middle Aged , Atrial Fibrillation/genetics , Atrial Fibrillation/surgery , Genotype , Prospective Studies , Pulmonary Veins/surgery , Risk Factors , Aged , Homeobox Protein PITX2
2.
J Cardiovasc Electrophysiol ; 33(8): 1655-1664, 2022 08.
Article in English | MEDLINE | ID: mdl-35598280

ABSTRACT

INTRODUCTION: To target posterior wall isolation (PWI) in atrial fibrillation (AF) ablation, diffuse ablation theoretically confers a lower risk of conduction recovery compared to box set. We sought to assess the safety and efficacy of diffuse PWI with low-flow, medium-power, and short-duration (LF-MPSD) ablation, and evaluate the durability of pulmonary vein isolation (PVI) and PWI among patients undergoing repeat ablations. METHODS: We retrospectively studied patients undergoing LF-MPSD ablation for AF (PVI + diffuse PWI) between August 2017 and December 2019. Clinical characteristics were collected. Kaplan-Meier survival analysis was performed to study AF/atrial flutter (AFL) recurrence. Ablation data were analyzed in patients who underwent a repeat AF/AFL ablation. RESULTS: Of the 463 patients undergoing LF-MPSD AF ablation (PVI alone, or PVI + diffuse PWI), 137 patients had PVI + diffuse PWI. Acute PWI with complete electrocardiogram elimination was achieved in 134 (97.8%) patients. Among the 126 patients with consistent follow-up, 38 (30.2%) patients had AF/AFL recurrence during a median duration of 14 months. Eighteen patients underwent a repeat AF/AFL ablation after PVI + diffuse PWI, and 16 (88.9%) patients had durable PVI, in contrast to 10 of 45 (23.9%) patients who had redo ablation after LF-MPSD PVI alone. Seven patients (38.9%) had durable PWI, while 11 patients had partial electrical recovery at the posterior wall. The median percentage of area without electrical activity at the posterior wall was 70.7%. Conduction block across the posterior wall was maintained in 16 (88.9%) patients. CONCLUSION: There was a high rate of PVI durability in patients undergoing diffuse PWI and PVI. Partial posterior wall electrical recovery was common but conduction block across the posterior wall was maintained in most patients.


Subject(s)
Atrial Fibrillation , Atrial Flutter , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Atrial Fibrillation/surgery , Atrial Flutter/diagnosis , Atrial Flutter/etiology , Atrial Flutter/surgery , Catheter Ablation/adverse effects , Humans , Pulmonary Veins/surgery , Recurrence , Retrospective Studies , Treatment Outcome
3.
J Biomech ; 46(14): 2550-3, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23948375

ABSTRACT

Mitral annuloplasty has been a keystone to the success of mitral valve repair in functional mitral regurgitation. Understanding the complex interplay between annular-ring stresses and left ventricular function has significant implications for patient-ring selection, repair failure, and patient safety. A step towards assessing these challenges is developing a transducer that can be implanted in the exact method as commercially available rings and can quantify multidirectional ring loading. An annuloplasty ring transducer was developed to measure stresses at eight locations on both the in-plane and out-of-plane surfaces of an annuloplasty ring's titanium core. The transducer was implanted in an ovine subject using 10 sutures at near symmetric locations. At implantation, the ring was observed to undersize the mitral annulus. The flaccid annulus exerted both compressive (-) and tensile stresses (+) on the ring ranging from -3.17 to 5.34 MPa. At baseline hemodynamics, stresses cyclically changed and peaked near mid-systole. Mean changes in cyclic stress from ventricular diastole to mid-systole ranged from -0.61 to 0.46 MPa (in-plane direction) and from -0.49 to 1.13 MPa (out-of-plane direction). Results demonstrate the variability in ring stresses that can be introduced during implantation and the cyclic contraction of the mitral annulus. Ring stresses at implantation were approximately 4 magnitudes larger than the cyclic changes in stress throughout the cardiac cycle. These methods will be extended to ring transducers of differing size and geometry. Upon additional investigation, these data will contribute to improved knowledge of annulus-ring stresses, LV function, and the safer development of mitral repair techniques.


Subject(s)
Heart Valve Prosthesis Implantation , Mitral Valve Annuloplasty , Animals , Sheep , Stress, Mechanical
4.
J Biomech Eng ; 135(9): 94502, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23720100

ABSTRACT

Mitral annular calcification (MAC) involves calcium deposition in the fibrous annulus supporting the mitral valve (MV). When calcification extends onto the leaflets, valve opening can be restricted. The influence of MAC MV geometry on Doppler gradients is unknown. This study describes a novel methodology to rapid-prototype subject-specific MAC MVs. Replicated valves were used to assess the effects of distorted annular-leaflet geometry on Doppler-derived, transmitral gradients in comparison to direct pressure measurements and to determine if transmitral gradients vary according to measurement location. Three-dimensional echocardiography data sets were selected for two MAC MVs and one healthy MV. These MVs were segmented and rapid prototyped in their middiastolic configuration for in vitro testing. The effects of MV geometry, measurement modality, and measurement location on transmitral pressure gradient were assessed by Doppler and catheter at three locations along the MV's intercommissural axis. When comparing dimensions of the rapid-prototyped valves to the subject echocardiography data sets, mean relative errors ranged from 6.2% to 35%. For the evaluated MVs, Doppler pressure gradients exhibited good agreement with catheter-measured gradients at a variety of flow rates, though with slight systematic overestimation in the recreated MAC valves. For all of the tested MVs, measuring the transmitral pressure gradient at differing valve orifice positions had minimal impact on observed gradients. Upon the testing of additional normal and calcific MVs, these data may contribute to an improved clinical understanding of MAC-related mitral stenosis. Moreover, they provide the ability to statistically evaluate between measurement locations, flow rates, and valve geometries for Doppler-derived pressure gradients. Determining these end points will contribute to greater clinical understanding for the diagnosis MAC patients and understanding the use and application of Doppler echocardiography to estimate transmitral pressure gradients.


Subject(s)
Calcinosis/diagnostic imaging , Catheters , Echocardiography, Doppler , Imaging, Three-Dimensional/methods , Mitral Valve/diagnostic imaging , Pressure , Humans
5.
Ann Thorac Surg ; 95(3): 825-30, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23374445

ABSTRACT

BACKGROUND: This study was undertaken to evaluate an in vitro mitral valve (MV) simulator's ability to mimic the systolic leaflet coaptation, regurgitation, and leaflet mechanics of a healthy ovine model and an ovine model with chronic ischemic mitral regurgitation (IMR). METHODS: Mitral valve size and geometry of both healthy ovine animals and those with chronic IMR were used to recreate systolic MV function in vitro. A2-P2 coaptation length, coaptation depth, tenting area, anterior leaflet strain, and MR were compared between the animal groups and valves simulated in the bench-top model. RESULTS: For the control conditions, no differences were observed between the healthy animals and simulator in coaptation length (p = 0.681), coaptation depth (p = 0.559), tenting area (p = 0.199), and anterior leaflet strain in the radial (p = 0.230) and circumferential (p = 0.364) directions. For the chronic IMR conditions, no differences were observed between the models in coaptation length (p = 0.596), coaptation depth (p = 0.621), tenting area (p = 0.879), and anterior leaflet strain in the radial (p = 0.151) and circumferential (p = 0.586) directions. MR was similar between IMR models, with an asymmetrical jet originating from the tethered A3-P3 leaflets. CONCLUSIONS: This study is the first to demonstrate the effectiveness of an in vitro simulator to emulate the systolic valvular function and mechanics of a healthy ovine model and one with chronic IMR. The in vitro IMR model provides the capability to recreate intermediary and exacerbated levels of annular and subvalvular distortion for which IMR repairs can be simulated. This system provides a realistic and controllable test platform for the development and evaluation of current and future IMR repairs.


Subject(s)
Computer Simulation , Mitral Valve Insufficiency/physiopathology , Mitral Valve/physiopathology , Myocardial Ischemia/complications , Ventricular Function, Left/physiology , Animals , Disease Models, Animal , Mitral Valve Insufficiency/etiology , Myocardial Ischemia/physiopathology , Severity of Illness Index , Sheep, Domestic , Systole
SELECTION OF CITATIONS
SEARCH DETAIL
...