Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298831

ABSTRACT

Newcastle disease virus (NDV) is one of the most serious contagions affecting domestic poultry and other avian species. It causes high morbidity and mortality, resulting in huge economic losses to the poultry industry worldwide. Despite vaccination, NDV outbreaks increase the need for alternative prevention and control means. In this study, we have screened fractions of Buthus occitanus tunetanus (Bot) scorpion venom and isolated the first scorpion peptide inhibiting the NDV multiplication. It showed a dose dependent effect on NDV growth in vitro, with an IC50 of 0.69 µM, and a low cytotoxicity on cultured Vero cells (CC50 > 55 µM). Furthermore, tests carried out in specific pathogen-free embryonated chicken eggs demonstrated that the isolated peptide has a protective effect on chicken embryos against NDV, and reduced by 73% the virus titer in allantoic fluid. The N-terminal sequence, as well as the number of cysteine residues of the isolated peptide, showed that it belongs to the scorpion venom Chlorotoxin-like peptides family, which led us to designate it "BotCl". Interestingly, at 10 µg/mL, BotCl showed an inhibiting effect three times higher than its analogue AaCtx, from Androctonus australis (Aa) scorpion venom, on NDV development. Altogether, our results highlight the chlorotoxin-like peptides as a new scorpion venom AMPs family.


Subject(s)
Newcastle disease virus , Scorpion Venoms , Animals , Chlorocebus aethiops , Chick Embryo , Vero Cells , Peptides/chemistry , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Chickens , Scorpions
2.
FEBS Open Bio ; 12(6): 1166-1177, 2022 06.
Article in English | MEDLINE | ID: mdl-35384415

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpes virus 8 (HHV-8), causes primary effusion lymphoma, multicentric Castleman's disease, and Kaposi's sarcoma. Few antiviral drugs are available to efficiently control KSHV infection, and therefore, the development of novel, effective anti-KSHV treatments is needed. The aim of this study was to determine the antiviral activity of ethanolic and aqueous extracts, essential oils, and certain flavonoids (hesperidin, eupafolin, and vicenin) derived from Thymus capitatus (commonly known as thyme). We assessed the toxicity of these different extracts and components in RPE-1 cell cultures using the MTS test and evaluated their antiviral effect using the TCID50 method. The mechanism of action was determined through time-of-addition tests as well as viral entry, attachment, and virucidal assays. Additionally, western blot analysis was also used to assess their modes of action. Total treatment assay showed that the aqueous extract of T. capitatus has the highest inhibitory effect against KSHVLYT with an EC50 value of 0.2388 µg·mL-1 . Both hesperidin and eupafolin showed the ability to inactivate viral infection in a dose-response manner (EC50 values of 0.2399 and 1.396 µm, respectively). Moreover, they were able to inactivate KSHVLyt postinfection by reducing viral protein expression. In summary, the effective antiviral property of the aqueous extract is likely a result of the inhibition of viral growth within the host cells by both hesperidin and eupafolin.


Subject(s)
Herpesvirus 8, Human , Hesperidin , Sarcoma, Kaposi , Antiviral Agents/pharmacology , Flavonoids/metabolism , Flavonoids/pharmacology , Herpesvirus 8, Human/metabolism , Hesperidin/metabolism , Hesperidin/pharmacology , Humans , Sarcoma, Kaposi/pathology
3.
Pharmaceutics ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36678743

ABSTRACT

An efficient and simple approach has been developed for the synthesis of eight dialkyl/aryl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(aryl)methyl]phosphonates through the Pudovik-type reaction of dialkyl/arylphosphite with imines, obtained from 5-phenyl-1,3,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Five of them were hydrolyzed to lead to the corresponding phosphonic acids. Selected synthesized compounds were screened for their in vitro antiviral activity against the avian bronchitis virus (IBV). In the MTT cytotoxicity assay, the dose-response curve showed that all test compounds were safe in the range concentration of 540-1599 µM. The direct contact of novel synthesized compounds with IBV showed that the diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethoxyphenyl)methyl]phosphonate (5f) (at 33 µM) and the [(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl)methyl] phosphonic acid (6a) (at 1.23 µM) strongly inhibited the IBV infectivity, indicating their high virucidal activity. However, virus titers from IBV-infected Vero cells remained unchanged in response to treatment with the lowest non-cytotoxic concentrations of synthesized compounds suggesting their incapacity to inhibit the virus replication inside the host cell. Lack of antiviral activity might presumably be ascribed to their polarity that hampers their diffusion across the lipophilic cytoplasmic membrane. Therefore, the interactions of 5f and 6a were analyzed against the main coronavirus protease, papain-like protease, and nucleocapsid protein by molecular docking methods. Nevertheless, the novel 1,3,4-oxadiazole-based α-aminophosphonic acids and α-amino-phosphonates hold potential for developing new hygienic virucidal products for domestic, chemical, and medical uses.

4.
J Clin Med ; 9(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322733

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is a global pandemic that continues to sweep across the world, posing an urgent need for effective therapies and prevention of the spread of the severe acute respiratory syndrome related to coronavirus-2 (SARS-CoV-2). A major hypothesis that is currently guiding research and clinical care posits that an excessive and uncontrolled surge of pro-inflammatory cytokines (the so-called "cytokine storm") drives morbidity and mortality in the most severe cases. In the overall efforts made to develop effective and safe therapies (including vaccines) for COVID-19, clinicians are thus repurposing ready-to-use drugs with direct or indirect anti-inflammatory and immunomodulatory activities. Speculatively, there are many opportunities and challenges in targeting immune/inflammatory processes in the evolving settings of COVID-19 disease because of the need to safely balance the fight against virus and aggressive inflammation versus the suppression of host immune defenses and the risk of additional harms in already compromised patients. To this end, many studies are globally underway to weigh the pros and cons of tailoring drugs used for inflammatory-driven conditions to COVID-19 patient care, and the next step will be to summarize the growing clinical trial experience into clean clinical practice. Based on the current evidence, anti-inflammatory drugs should be considered as complementary approaches to anti-viral drugs that need to be timely introduced in the management of COVID-19 according to disease severity. While drugs that target SARS-CoV-2 entry or replication are expected to confer the greatest benefits at the early stage of the infection, anti-inflammatory drugs would be more effective in limiting the inflammatory processes that drive the worsening of the disease.

5.
Phytother Res ; 32(8): 1555-1563, 2018 08.
Article in English | MEDLINE | ID: mdl-29673001

ABSTRACT

Thymus capitatus represents 1 of the 5 Tunisian species of the genus Thymus, which has long­standing use for flavouring and preserving several food products. Its constituents have been reported to endow antimicrobial properties, but little is known about their antiviral activities. The aim of this study was to examine the antiviral activity of pure compounds from the most bioactive inhibitory T. capitatus extract in vitro against herpes simplex virus Type 2 (HSV­2) infection and to identify their mechanism of action. Either the extracts or the essential oil exert inhibitory activity against HSV­2 infection, with the ethanolic extract showing the lowest EC50 value (2.3 µg/ml). Three pure compounds were then isolated from the ethanolic extract and investigated for their antiviral activity. ß­sitosterol showed the most favourable selectivity index and both cinnamaldehyde and carvacrol exerted moderate antiviral effect. Investigation of the mechanism of action revealed that all three compounds directly inactivated the infectivity of the virus particles. These findings suggest the use of T. capitatus ethanolic extract as source of anti­HSV­2 pure compounds and warrant further studies to evaluate their therapeutic potential.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 2, Human/drug effects , Plant Extracts/pharmacology , Thymus Plant/chemistry , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Chlorocebus aethiops , Cymenes , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Vero Cells , Virus Inactivation
6.
BMC Vet Res ; 10: 231, 2014 Sep 27.
Article in English | MEDLINE | ID: mdl-25260761

ABSTRACT

BACKGROUND: Bovine herpes virus type 1 (BHV-1) still causes great economic loss to the livestock industry and trade because there aren't any available drugs that proved to be fully effective against it. In this study, the cytotoxicity and the antiviral activities of the Thymus capitata extracts were evaluated for the development of new, non toxic and specific anti-herpesvirus drug. Aqueous extracts (AE), ethanolic extracts (EE) and essential oil (EO) of the aerial parts of Thymus capitata were analyzed to determine their chemical compositions by gas chromatography, and high performance liquid chromatography combined with mass spectrometry. Their cytotoxicity and antiviral activities against Bovine Herpesvirus type 1 (BHV-1) were evaluated by quantifying the reduction of the viral cytopathic effect using Madin-Darby Bovine Kidney cell line with colorimetric assay. T. capitata extracts were added at different stages of the viral infection to investigate and better quantify their potential inhibitory effects. RESULTS: Polyphenols and flavonoids were the major compounds found in T. capitata EO, EE and AE. The cytotoxic concentrations at 50% were 48.70, 189 and 289 µg ml(-1) for EO, EE and AE, respectively. The inhibitor concentrations at 50% for the EO, EE and AE, were 3.36, 47.80 and 164 µg ml(-1), respectively. The selectivity index anti-BHV-1 values were 14.49, 3.95 and 1.81 for EO, EE and AE, respectively. Thus, the EO extracts were the most efficient antiviral compounds. T. capitata extracts affect mainly the adsorption of BHV-1 virus to host cells. CONCLUSION: T. capitata extracts inhibit the viral replication by interfering with the early stages of viral adsorption and replication. Thus, T. capitata is a potential candidate for anti-herpesvirus treatment.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Bovine/drug effects , Plant Extracts/pharmacology , Thymus Plant/chemistry , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Dogs , Herpesvirus 1, Bovine/physiology , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...