Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 24(3): 531-46, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16293579

ABSTRACT

Human embryonic stem cells (hESCs) offer a renewable source of a wide range of cell types for use in research and cell-based therapies. Characterizing these cells provides important information about their current state and affords relevant details for subsequent manipulations. For example, identifying genes expressed during culture, as well as their temporal expression order after passaging and conditions influencing the formation of all three germ layers may be helpful for the production of functional beta islet cells used in treating type I diabetes. Although several hESC lines have demonstrated karyotypic instability during extended time in culture, select variant lines exhibit characteristics similar to their normal parental lines. Such variant lines may be excellent tools and abundant sources of cells for pilot studies and in vitro differentiation research in which chromosome number is not a concern, similar to the role currently played by embryonal carcinoma cell lines. It is crucial that the cells be surveyed at a genetic and proteomic level during extensive propagation, expansion, and manipulation in vitro. Here we describe a comprehensive characterization of the variant hESC line BG01V, which was derived from the karyotypically normal, parental hESC line BG01. Our characterization process employs cytogenetic analysis, short tandem repeat and HLA typing, mitochondrial DNA sequencing, gene expression analysis using quantitative reverse transcription-polymerase chain reaction and microarray, assessment of telomerase activity, methylation analysis, and immunophenotyping and teratoma formation, in addition to screening for bacterial, fungal, mycoplasma, and human pathogen contamination.


Subject(s)
Embryo, Mammalian/cytology , Stem Cells/cytology , Cell Culture Techniques , Cells, Cultured , Embryo, Mammalian/physiology , Humans , National Institutes of Health (U.S.) , Stem Cells/physiology , United States
2.
In Vitro Cell Dev Biol Anim ; 39(10): 449-53, 2003.
Article in English | MEDLINE | ID: mdl-14705957

ABSTRACT

Although the ES-D3 murine embryonic stem cell line was one of the first derived, little information exists on the in vitro differentiation potential of these cells. We have used immunocytochemical and flow cytometric methods to monitor ES-D3 embryoid body differentiation in vitro during a 21-d period. Spontaneous differentiation of embryoid body cells was induced by leukemia inhibitory factor withdrawal in the absence of feeder cells. The pluripotent stem cell markers Oct-3/4, SSEA-1, and EMA-1 were found to persist for at least 7 d, whereas the primitive endoderm marker cytokeratin endo-A was expressed at increasing levels from day 6. The localization of these antigens within the embryoid bodies suggested that embryonic ectoderm- and primitive endoderm-derived tissues were segregated. Localized expression of class III beta-tubulin and sarcomeric myosin also was detected, indicating that representatives of all three embryonic germ layers were present after induction of differentiation in vitro.


Subject(s)
Cell Differentiation/physiology , Hematopoietic Stem Cells/cytology , Alkaline Phosphatase/analysis , Animals , Antibodies, Monoclonal , Cell Culture Techniques/methods , Cell Line , Embryo, Mammalian , Fluorescent Antibody Technique , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...