Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(23): 11354-11372, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37851709

ABSTRACT

Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.


Subject(s)
Neurons , Somatosensory Cortex , Mice , Animals , Somatosensory Cortex/physiology , Neurons/physiology , Dendrites/physiology , Pyramidal Cells/physiology , Interneurons/physiology
2.
Science ; 370(6523)2020 12 18.
Article in English | MEDLINE | ID: mdl-33335033

ABSTRACT

Hippocampal output influences memory formation in the neocortex, but this process is poorly understood because the precise anatomical location and the underlying cellular mechanisms remain elusive. Here, we show that perirhinal input, predominantly to sensory cortical layer 1 (L1), controls hippocampal-dependent associative learning in rodents. This process was marked by the emergence of distinct firing responses in defined subpopulations of layer 5 (L5) pyramidal neurons whose tuft dendrites receive perirhinal inputs in L1. Learning correlated with burst firing and the enhancement of dendritic excitability, and it was suppressed by disruption of dendritic activity. Furthermore, bursts, but not regular spike trains, were sufficient to retrieve learned behavior. We conclude that hippocampal information arriving at L5 tuft dendrites in neocortical L1 mediates memory formation in the neocortex.


Subject(s)
Dendrites/physiology , Hippocampus/physiology , Learning/physiology , Neocortex/physiology , Perirhinal Cortex/physiology , Pyramidal Cells/physiology , Animals , Hippocampus/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neocortex/cytology , Optogenetics , Perirhinal Cortex/cytology , Rats, Wistar
3.
Cell Rep ; 30(10): 3492-3505.e5, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32160552

ABSTRACT

Layer 6b (L6b), the deepest neocortical layer, projects to cortical targets and higher-order thalamus and is the only layer responsive to the wake-promoting neuropeptide orexin/hypocretin. These characteristics suggest that L6b can strongly modulate brain state, but projections to L6b and their influence remain unknown. Here, we examine the inputs to L6b ex vivo in the mouse primary somatosensory cortex with rabies-based retrograde tracing and channelrhodopsin-assisted circuit mapping in brain slices. We find that L6b receives its strongest excitatory input from intracortical long-range projection neurons, including those in the contralateral hemisphere. In contrast, local intracortical input and thalamocortical input were significantly weaker. Moreover, our data suggest that L6b receives far less thalamocortical input than other cortical layers. L6b was most strongly inhibited by PV and SST interneurons. This study shows that L6b integrates long-range intracortical information and is not part of the traditional thalamocortical loop.


Subject(s)
Cerebral Cortex/physiology , Neurons/physiology , Animals , Mice, Inbred C57BL , Models, Neurological , Synapses/physiology , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...