Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Front Bioeng Biotechnol ; 11: 1150522, 2023.
Article in English | MEDLINE | ID: mdl-37288358

ABSTRACT

Knee osteoarthritis (OA) is a degenerative joint disease of the knee that results from the progressive loss of articular cartilage. It is most common in the elderly and affects millions of people worldwide, leading to a continuous increase in the number of total knee replacement surgeries. These surgeries improve the patient's physical mobility, but can lead to late infection, loosening of the prosthesis, and persistent pain. We would like to investigate if cell-based therapies can avoid or delay such surgeries in patients with moderate OA by injecting expanded autologous peripheral blood derived CD34+ cells (ProtheraCytes®) into the articular joint. In this study we evaluated the survival of ProtheraCytes® when exposed to synovial fluid and their performance in vitro with a model consisting of their co-culture with human OA chondrocytes in separate layers of Transwells and in vivo with a murine model of OA. Here we show that ProtheraCytes® maintain high viability (>95%) when exposed for up to 96 hours to synovial fluid from OA patients. Additionally, when co-cultured with OA chondrocytes, ProtheraCytes® can modulate the expression of some chondrogenic (collagen II and Sox9) and inflammatory/degrading (IL1ß, TNF, and MMP-13) markers at gene or protein levels. Finally, ProtheraCytes® survive after injection into the knee of a collagenase-induced osteoarthritis mouse model, engrafting mainly in the synovial membrane, probably due to the fact that ProtheraCytes® express CD44, a receptor of hyaluronic acid, which is abundantly present in the synovial membrane. This report provides preliminary evidence of the therapeutic potential of CD34+ cells on OA chondrocytes in vitro and their survival after in vivo implantation in the knee of mice and merits further investigation in future preclinical studies in OA models.

2.
Sci Rep ; 13(1): 7783, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179423

ABSTRACT

Osteoarthritis (OA) is the most prevalent rheumatic disease and a fast growing cause of disability. Current pharmacological treatments include antalgics and non-steroid anti-inflammatory drugs to control pain and inflammation as well as slow acting drugs such as intra-articular (IA) administration of hyaluronic acid. Oral supplementation or diet rich in polyunsaturated free fatty acids are proposed but evidence for benefit is still under debate. We here investigated the therapeutic potential of ARA 3000 BETA, an injectable copolymer of fatty acids, at the structural level in OA. Collagenase-induced osteoarthritis model was induced in C57BL/6 mice by collagenase injection into knee joint. Mice were treated with one or two IA or four intra-muscular injections (IM) of ARA 3000 BETA. At sacrifice, knee joints were recovered for cartilage analysis by confocal laser scanning microscopy (CLSM) and bone analysis by micro-computed tomography system. OA histological scoring was performed after safranin O/fast green staining. Histological analysis revealed a protective effect against cartilage degradation in treated knee joints after IM and IA administration. This was confirmed by CLSM with a significant improvement of all articular cartilage parameters, including thickness, volume and surface degradation whatever the administration route. A slight protective effect was also noticed on subchondral bone parameters and knee joint calcification after IM administration and to a lesser extent, two IA injections. We demonstrated the therapeutic efficacy of injectable ARA 3000 BETA in OA with a protection against cartilage and bone alterations providing the proof-of-concept that clinical translation might be envisioned to delay disease progression.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Osteoarthritis , Mice , Animals , Fatty Acids/metabolism , X-Ray Microtomography , Disease Models, Animal , Mice, Inbred C57BL , Osteoarthritis/pathology , Collagenases/metabolism , Cartilage, Articular/pathology , Osteoarthritis, Knee/pathology , Injections, Intra-Articular
3.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131613

ABSTRACT

Cell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases. The development of imaging tools that enable monitoring cells and hydrogel independently is key to achieving this goal. Our objective herein is to longitudinally study an iodine-labeled hydrogel, incorporating gold-labeled stem cells, by bicolor CT imaging after in vivo injection in rodent brains or knees. To this aim, an injectable self-healing hyaluronic acid (HA) hydrogel with long-persistent radiopacity was formed by the covalent grafting of a clinical contrast agent on HA. The labeling conditions were tuned to achieve sufficient X-ray signal and to maintain the mechanical and self-healing properties as well as injectability of the original HA scaffold. The efficient delivery of both cells and hydrogel at the targeted sites was demonstrated by synchrotron K-edge subtraction-CT. The iodine labeling enabled to monitor the hydrogel biodistribution in vivo up to 3 days post-administration, which represents a technological first in the field of molecular CT imaging agents. This tool may foster the translation of combined cell-hydrogel therapies into the clinics.

4.
Aging Cell ; 21(11): e13714, 2022 11.
Article in English | MEDLINE | ID: mdl-36251933

ABSTRACT

Recent advances in cell reprogramming showed that OSKM induction is able to improve cell physiology in vitro and in vivo. Here, we show that a single short reprogramming induction is sufficient to prevent musculoskeletal functions deterioration of mice, when applied in early life. In addition, in old age, treated mice have improved tissue structures in kidney, spleen, skin, and lung, with an increased lifespan of 15% associated with organ-specific differential age-related DNA methylation signatures rejuvenated by the treatment. Altogether, our results indicate that a single short reprogramming early in life might initiate and propagate an epigenetically related mechanism to promote a healthy lifespan.


Subject(s)
Cellular Reprogramming , Longevity , Mice , Animals , Longevity/genetics , Cellular Reprogramming/genetics , Health Status
5.
J Control Release ; 341: 578-590, 2022 01.
Article in English | MEDLINE | ID: mdl-34915070

ABSTRACT

Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.


Subject(s)
Polymers , Animals , Delayed-Action Preparations/chemistry , Mice , Polymers/chemistry
6.
Cells ; 10(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34685707

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is a severe autoimmune disease for which mesenchymal stromal cells (MSCs)-based therapy was reported to reduce SSc-related symptoms in pre-clinical studies. Recently, extracellular vesicles released by MSCs (MSC-EVs) were shown to mediate most of their therapeutic effect. Here, we aimed at improving their efficacy by increasing the MSC-EV dose or by IFNγ-priming of MSCs. METHODS: small size (ssEVs) and large size EVs (lsEVs) were recovered from murine MSCs that were pre-activated using 1 or 20 ng/mL of IFNγ. In the HOCl-induced model of SSc, mice were treated with EVs at day 21 and sacrificed at day 42. Lung and skin samples were collected for histological and molecular analyses. RESULTS: increasing the dose of MSC-EVs did not add benefit to the dose previously reported to be efficient in SSc. By contrast, IFNγ pre-activation improved MSC-EVs-based treatment, essentially in the lungs. Low doses of IFNγ decreased the expression of fibrotic markers, while high doses improved remodeling and anti-inflammatory markers. IFNγ pre-activation upregulated iNos, IL1ra and Il6 in MSCs and ssEVs and the PGE2 protein in lsEVs. CONCLUSION: IFNγ-pre-activation improved the therapeutic effect of MSC-EVs preferentially in the lungs of SSc mice by modulating anti-inflammatory and anti-fibrotic markers.


Subject(s)
Extracellular Vesicles/metabolism , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/therapy , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Immunosuppression Therapy , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Scleroderma, Systemic/chemically induced , Skin/pathology , Up-Regulation/drug effects
7.
J Autoimmun ; 121: 102660, 2021 07.
Article in English | MEDLINE | ID: mdl-34020253

ABSTRACT

Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.


Subject(s)
Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/immunology , MicroRNAs/metabolism , Scleroderma, Systemic/therapy , Animals , Apoptosis/genetics , Apoptosis/immunology , DNA Methylation/immunology , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation/immunology , Humans , Hypochlorous Acid/administration & dosage , Hypochlorous Acid/toxicity , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/immunology
8.
Front Cell Dev Biol ; 9: 579951, 2021.
Article in English | MEDLINE | ID: mdl-33738280

ABSTRACT

The super healer Murphy Roths Large (MRL) mouse represents the "holy grail" of mammalian regenerative model to decipher the key mechanisms that underlies regeneration in mammals. At a time when mesenchymal stem cell (MSC)-based therapy represents the most promising approach to treat degenerative diseases such as osteoarthritis (OA), identification of key factors responsible for the regenerative potential of MSC derived from MRL mouse would be a major step forward for regenerative medicine. In the present study, we assessed and compared MSC derived from MRL (MRL MSC) and C57BL/6 (BL6 MSC) mice. First, we compare the phenotype and the differentiation potential of MRL and BL6 MSC and did not observe any difference. Then, we evaluated the proliferation and migration potential of the cells and found that while MRL MSC proliferate at a slower rate than BL6 MSC, they migrate at a significantly higher rate. This higher migration potential is mediated, in part, by MRL MSC-secreted products since MRL MSC conditioned medium that contains a complex of released factors significantly increased the migration potential of BL6 MSC. A comparative analysis of the secretome by quantitative shotgun proteomics and Western blotting revealed that MRL MSC produce and release higher levels of mesencephalic astrocyte-derived neurotrophic factor (MANF) as compared to MSC derived from BL6, BALB/c, and DBA1 mice. MANF knockdown in MRL MSC using a specific small interfering RNA (siRNA) reduced both MRL MSC migration potential in scratch wound assay and their regenerative potential in the ear punch model in BL6 mice. Finally, injection of MRL MSC silenced for MANF did not protect mice from OA development. In conclusion, our results evidence that the enhanced regenerative potential and protection from OA of MRL mice might be, in part, attributed to their MSC, an effective reservoir of MANF.

9.
Biomaterials ; 226: 119544, 2020 01.
Article in English | MEDLINE | ID: mdl-31648137

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are of interest in the context of osteoarthritis (OA) therapy. We previously demonstrated that TGFß-induced gene product-h3 (TGFBI/BIGH3) is downregulated in human MSCs (hMSCs) from patients with OA, suggesting a possible link with their impaired regenerative potential. In this study, we investigated TGFBI contribution to MSC-based therapy in OA models. First, we showed that co-culture with murine MSCs (mMSCs) partly restored the expression of anabolic markers and decreased expression of catabolic markers in OA-like chondrocytes only upon priming by TGFß3. Moreover, TGFß3-primed hMSCs not only modulated the expression of anabolic and catabolic markers, but also decreased inflammatory factors. Then, we found that upon TGFBI silencing, mMSCs partly lost their inductive effect on chondrocyte anabolic markers. Injection of hMSCs in which TGFBI was silenced did not protect mice from OA development. Finally, we showed that MSC chondroprotection was attributed to the presence of TGFBI mRNA and protein in extracellular vesicles. Our findings suggest that TGFBI is a chondroprotective factor released by MSCs and an anabolic regulator of cartilage homeostasis.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Mesenchymal Stem Cells , Osteoarthritis , Animals , Cells, Cultured , Chondrocytes , Coculture Techniques , Humans , Mice , Osteoarthritis/therapy
10.
Front Immunol ; 9: 2571, 2018.
Article in English | MEDLINE | ID: mdl-30455706

ABSTRACT

Objectives: Skin fibrosis is the hallmark of systemic sclerosis (SSc) a rare intractable disease with unmet medical need. We previously reported the anti-fibrotic potential of mesenchymal stem cells (MSCs) in a murine model of SSc. This model, based on daily intra-dermal injections of hypochlorite (HOCl) during 6 weeks, is an inducible model of the disease. Herein, we aimed at characterizing the development of skin fibrosis in HOCl-induced SSc (HOCl-SSc), and evaluating the impact of MSC infusion during the fibrogenesis process. Methods: After HOCl-SSc induction in BALB/c mice, clinical, histological and biological parameters were measured after 3 weeks (d21) and 6 weeks (d42) of HOCl challenge, and 3 weeks after HOCl discontinuation (d63). Treated-mice received infusions of 2.5 × 105 MSCs 3 weeks before sacrifice (d0, d21, d42). Results: HOCl injections induced a two-step process of fibrosis development: first, an 'early inflammatory phase', characterized at d21 by highly proliferative infiltrates of myofibroblasts, T-lymphocytes and macrophages. Second, a phase of 'established matrix fibrosis', characterized at d42 by less inflammation, but strong collagen deposition and followed by a third phase of 'spontaneous tissue remodeling' after HOCl discontinuation. This phase was characterized by partial fibrosis receding, due to enhanced MMP1/TIMP1 balance. MSC treatment reduced skin thickness in the three phases of fibrogenesis, exerting more specialized mechanisms: immunosuppression, abrogation of myofibroblast activation, or further enhancing tissue remodeling, depending on the injection time-point. Conclusion: HOCl-SSc mimics three fibrotic phenotypes of scleroderma, all positively impacted by MSC therapy, demonstrating the great plasticity of MSC, a promising cure for SSc.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Collagen/metabolism , Fibrosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Scleroderma, Systemic/therapy , Skin Diseases/therapy , Animals , Disease Models, Animal , Female , Hypochlorous Acid , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Oxidative Stress/physiology , Skin/pathology , Skin Diseases/chemically induced
11.
Aging (Albany NY) ; 10(6): 1442-1453, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29920476

ABSTRACT

Progressive loss of tissue homeostasis is a hallmark of numerous age-related pathologies, including osteoarthritis (OA). Accumulation of senescent chondrocytes in joints contributes to the age-dependent cartilage loss of functions through the production of hypertrophy-associated catabolic matrix-remodeling enzymes and pro-inflammatory cytokines. Here, we evaluated the effects of the secreted variant of the anti-aging hormone α-Klotho on cartilage homeostasis during both cartilage formation and OA development. First, we found that α-Klotho expression was detected during mouse limb development, and transiently expressed during in vitro chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Genome-wide gene array analysis of chondrocytes from OA patients revealed that incubation with recombinant secreted α-Klotho repressed expression of the NOS2 and ZIP8/MMP13 catabolic remodeling axis. Accordingly, α-Klotho expression was reduced in chronically IL1ß-treated chondrocytes and in cartilage of an OA mouse model. Finally, in vivo intra-articular secreted α-Kotho gene transfer delays cartilage degradation in the OA mouse model. Altogether, our results reveal a new tissue homeostatic function for this anti-aging hormone in protecting against OA onset and progression.


Subject(s)
Cation Transport Proteins/metabolism , Glucuronidase/metabolism , Homeostasis/physiology , Matrix Metalloproteinase 13/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Cartilage/growth & development , Cartilage/metabolism , Cation Transport Proteins/genetics , Chondrocytes/metabolism , Embryo, Mammalian/metabolism , Gene Expression Regulation/physiology , Glucuronidase/genetics , Humans , Klotho Proteins , Matrix Metalloproteinase 13/genetics , Mice
12.
Theranostics ; 8(5): 1399-1410, 2018.
Article in English | MEDLINE | ID: mdl-29507629

ABSTRACT

Objectives: Mesenchymal stem cells (MSCs) release extracellular vesicles (EVs) that display a therapeutic effect in inflammatory disease models. Although MSCs can prevent arthritis, the role of MSCs-derived EVs has never been reported in rheumatoid arthritis. This prompted us to compare the function of exosomes (Exos) and microparticles (MPs) isolated from MSCs and investigate their immunomodulatory function in arthritis. Methods: MSCs-derived Exos and MPs were isolated by differential ultracentrifugation. Immunosuppressive effects of MPs or Exos were investigated on T and B lymphocytes in vitro and in the Delayed-Type Hypersensitivity (DTH) and Collagen-Induced Arthritis (CIA) models. Results: Exos and MPs from MSCs inhibited T lymphocyte proliferation in a dose-dependent manner and decreased the percentage of CD4+ and CD8+ T cell subsets. Interestingly, Exos increased Treg cell populations while parental MSCs did not. Conversely, plasmablast differentiation was reduced to a similar extent by MSCs, Exos or MPs. IFN-γ priming of MSCs before vesicles isolation did not influence the immunomodulatory function of isolated Exos or MPs. In DTH, we observed a dose-dependent anti-inflammatory effect of MPs and Exos, while in the CIA model, Exos efficiently decreased clinical signs of inflammation. The beneficial effect of Exos was associated with fewer plasmablasts and more Breg-like cells in lymph nodes. Conclusions: Both MSCs-derived MPs and Exos exerted an anti-inflammatory role on T and B lymphocytes independently of MSCs priming. However, Exos were more efficient in suppressing inflammation in vivo. Our work is the first demonstration of the therapeutic potential of MSCs-derived EVs in inflammatory arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Cell-Derived Microparticles/metabolism , Exosomes/metabolism , Immunosuppressive Agents/therapeutic use , Inflammation/drug therapy , Mesenchymal Stem Cells/metabolism , Animals , Arthritis, Experimental/pathology , Cell-Derived Microparticles/ultrastructure , Cryopreservation , Exosomes/ultrastructure , Inflammation/pathology , Mesenchymal Stem Cells/ultrastructure , Mice, Inbred C57BL , T-Lymphocytes/metabolism
13.
Front Immunol ; 9: 3056, 2018.
Article in English | MEDLINE | ID: mdl-30622540

ABSTRACT

Objectives: Fibrosis is a hallmark of systemic sclerosis (SSc), an intractable disease where innovative strategies are still being sought. Among novel anti-fibrotic approaches, mesenchymal stromal/stem cell (MSC)-based therapy appears promising. Previously, we reported anti-fibrotic effects of MSC in an experimental model of SSc, through various mechanisms (tissue remodeling, immunomodulation, anti-oxidant defense). Since immunomodulation is a pivotal mechanism for MSC therapeutic effects, we investigated the specific role of critical molecules associated with MSC immunosuppressive properties and hypothesized that MSC defective for these molecules would be less effective in reducing fibrosis in SSc. Methods: SSc was induced by 6-week daily intradermal injections of hypochlorite (HOCl) in mice. MSC were isolated from the bone marrow of wild type mice (WT) or mice knockout for IL1RA, IL6, or iNOS (IL1RA-/-, IL6-/-, or iNOS-/- MSC, respectively). Treated-mice received 2.5 × 105 MSC intravenous infusion at d21. Skin thickness, histological and biological parameters were evaluated in skin and blood at d42. Results: IL1RA-/- and IL6-/- MSC exerted similar anti-fibrotic properties as WT MSC, with a reduction of skin thickness together with less collagen deposition. Conversely, iNOS-/- MSC did not exert anti-fibrotic functions as shown by a similar skin thickness progression as non-treated HOCl-SSc mice. Compared with WT MSC, iNOS-/- MSC kept some immunosuppressive and tissue remodeling properties, but lost their capacity to reduce oxidative stress in HOCl-SSc mice. Conclusion: Our study highlights the crucial role of iNOS, whose activity is required for the anti-fibrotic properties of MSC in experimental SSc, with a special emphasis on NO-related anti-oxidant functions.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Nitric Oxide Synthase Type II/metabolism , Scleroderma, Systemic/therapy , Skin/pathology , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Hypochlorous Acid/administration & dosage , Hypochlorous Acid/toxicity , Injections, Intradermal , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-6/genetics , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Oxidative Stress/immunology , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Skin/drug effects , Skin/immunology , Treatment Outcome
14.
Theranostics ; 8(21): 5972-5985, 2018.
Article in English | MEDLINE | ID: mdl-30613275

ABSTRACT

Rationale: Monocytes play critical roles in the pathogenesis of arthritis by contributing to the inflammatory response and bone erosion. Among genes involved in regulating monocyte functions, miR-146a negatively regulates the inflammatory response and osteoclast differentiation of monocytes. It is also the only miRNA reported to differentially regulate the cytokine response of the two classical Ly6Chigh and non-classical Ly6Clow monocyte subsets upon bacterial challenge. Although miR-146a is overexpressed in many tissues of arthritic patients, its specific role in monocyte subsets under arthritic conditions remains to be explored. Methods: We analyzed the monocyte subsets during collagen-induced arthritis (CIA) development by flow cytometry. We quantified the expression of miR-146a in classical and non-classical monocytes sorted from healthy and CIA mice, as well as patients with rheumatoid arthritis (RA). We monitored arthritis features in miR-146a-/- mice and assessed in vivo the therapeutic potential of miR-146a mimics delivery to Ly6Chigh monocytes. We performed transcriptomic and pathway enrichment analyses on both monocyte subsets sorted from wild type and miR-146a-/- mice. Results: We showed that the expression of miR-146a is reduced in the Ly6Chigh subset of CIA mice and in the analogous monocyte subset (CD14+CD16-) in humans with RA as compared with healthy controls. The ablation of miR-146a in mice worsened arthritis severity, increased osteoclast differentiation in vitro and bone erosion in vivo. In vivo delivery of miR-146a to Ly6Chigh monocytes, and not to Ly6Clow monocytes, rescues bone erosion in miR-146a-/- arthritic mice and reduces osteoclast differentiation and pathogenic bone erosion in CIA joints of miR-146a+/+ mice, with no effect on inflammation. Silencing of the non-canonical NF-κB family member RelB in miR-146a-/- Ly6Chigh monocytes uncovers a role for miR-146a as a key regulator of the differentiation of Ly6Chigh, and not Ly6Clow, monocytes into osteoclasts under arthritic conditions. Conclusion: Our results show that classical monocytes play a critical role in arthritis bone erosion. They demonstrate the theranostics potential of manipulating miR-146a expression in Ly6Chigh monocytes to prevent joint destruction while sparing inflammation in arthritis.


Subject(s)
Antigens, Ly/analysis , Arthritis/pathology , Bone and Bones/pathology , Cell Differentiation , MicroRNAs/analysis , Monocytes/physiology , Osteoclasts/physiology , Animals , Arthritis/chemically induced , Arthritis/therapy , Arthritis, Rheumatoid/pathology , Disease Models, Animal , Flow Cytometry , Humans , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , MicroRNAs/administration & dosage , Monocytes/chemistry
15.
Front Immunol ; 8: 1638, 2017.
Article in English | MEDLINE | ID: mdl-29238343

ABSTRACT

OBJECTIVE: Assuming that mesenchymal stem cells (MSCs) respond to the osteoarthritic joint environment to exert a chondroprotective effect, we aimed at investigating the molecular response setup by MSCs after priming by osteoarthritic chondrocytes in cocultures. METHODS: We used primary human osteoarthritic chondrocytes and adipose stem cells (ASCs) in mono- and cocultures and performed a high-throughput secretome analysis. Among secreted proteins differentially induced in cocultures, we identified thrombospondin-1 (THBS1) as a potential candidate that could be involved in the chondroprotective effect of ASCs. RESULTS: Secretome analysis revealed significant induction of THBS1 in ASCs/chondrocytes cocultures at mRNA and protein levels. We showed that THBS1 was upregulated at late stages of MSC differentiation toward chondrocytes and that recombinant THBS1 (rTHBS1) exerted a prochondrogenic effect on MSC indicating a role of THBS1 during chondrogenesis. However, compared to control ASCs, siTHBS1-transfected ASCs did not decrease the expression of hypertrophic and inflammatory markers in osteoarthritic chondrocytes, suggesting that THBS1 was not involved in the reversion of osteoarthritic phenotype. Nevertheless, downregulation of THBS1 in ASCs reduced their immunosuppressive activity, which was consistent with the anti-inflammatory role of rTHBS1 on T lymphocytes. THBS1 function was then evaluated in the collagenase-induced OA model by comparing siTHBS1-transfected and control ASCs. The protective effect of ASCs evaluated by histological and histomorphological analysis of cartilage and bone was not seen with siTHBS1-transfected ASCs. CONCLUSION: Our data suggest that THBS1 did not exert a direct protective effect on chondrocytes but might reduce inflammation, subsequently explaining the therapeutic effect of ASCs in OA.

16.
Sci Rep ; 7(1): 16214, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176667

ABSTRACT

Mesenchymal stem or stromal cells (MSCs) exert chondroprotective effects in preclinical models of osteoarthritis (OA). Most of their therapeutic effects are mediated via soluble mediators, which can be conveyed within extracellular vesicles (EVs). The objective of the study was to compare the respective role of exosomes (Exos) or microvesicles/microparticles (MPs) in OA. MPs and Exos were isolated from bone marrow murine BM-MSCs through differential centrifugation. Effect of MPs or Exos was evaluated on OA-like murine chondrocytes and chondroprotection was quantified by RT-qPCR. In OA-like chondrocytes, BM-MSC-derived MPs and Exos could reinduce the expression of chondrocyte markers (type II collagen, aggrecan) while inhibiting catabolic (MMP-13, ADAMTS5) and inflammatory (iNOS) markers. Exos and MPs were also shown to protect chondrocytes from apoptosis and to inhibit macrophage activation. In vivo, Exos or MPs were injected in the collagenase-induced OA (CIOA) model and histomorphometric analyses of joints were performed by µCT and confocal laser microscopy. BM-MSCs, MPs and Exos equally protected mice from joint damage. In conclusion, MPs and Exos exerted similar chondroprotective and anti-inflammatory function in vitro and protected mice from developing OA in vivo, suggesting that either Exos or MPs reproduced the main therapeutic effect of BM-MSCs.


Subject(s)
Cell-Derived Microparticles/transplantation , Chondrocytes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Osteoarthritis/therapy , ADAMTS5 Protein/genetics , ADAMTS5 Protein/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Animals , Cells, Cultured , Collagen/genetics , Collagen/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
17.
Front Immunol ; 7: 392, 2016.
Article in English | MEDLINE | ID: mdl-27729913

ABSTRACT

OBJECTIVE: Mesenchymal stem cells isolated from adipose tissue (ASC) have been shown to influence the course of osteoarthritis (OA) in different animal models and are promising in veterinary medicine for horses involved in competitive sport. The aim of this study was to characterize equine ASCs (eASCs) and investigate the role of interferon-gamma (IFNγ)-priming on their therapeutic effect in a murine model of OA, which could be relevant to equine OA. METHODS: ASC were isolated from subcutaneous fat. Expression of specific markers was tested by cytometry and RT-qPCR. Differentiation potential was evaluated by histology and RT-qPCR. For functional assays, naïve or IFNγ-primed eASCs were cocultured with peripheral blood mononuclear cells or articular cartilage explants. Finally, the therapeutic effect of eASCs was tested in the model of collagenase-induced OA (CIOA) in mice. RESULTS: The immunosuppressive function of eASCs on equine T cell proliferation and their chondroprotective effect on equine cartilage explants were demonstrated in vitro. Both cartilage degradation and T cell activation were reduced by naïve and IFNγ-primed eASCs, but IFNγ-priming enhanced these functions. In CIOA, intra-articular injection of eASCs prevented articular cartilage from degradation and IFNγ-primed eASCs were more potent than naïve cells. This effect was related to the modulation of eASC secretome by IFNγ-priming. CONCLUSION: IFNγ-priming of eASCs potentiated their antiproliferative and chondroprotective functions. We demonstrated that the immunocompetent mouse model of CIOA was relevant to test the therapeutic efficacy of xenogeneic eASCs for OA and confirmed that IFNγ-primed eASCs may have a therapeutic value for musculoskeletal diseases in veterinary medicine.

18.
PLoS One ; 11(5): e0156161, 2016.
Article in English | MEDLINE | ID: mdl-27227960

ABSTRACT

Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFß3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring.


Subject(s)
Adipose Tissue/cytology , Cicatrix, Hypertrophic/prevention & control , Mesenchymal Stem Cells/cytology , Stromal Cells/cytology , Wound Healing/physiology , Animals , Cells, Cultured , Humans , Mesenchymal Stem Cell Transplantation , Mice , Mice, Nude
19.
J Autoimmun ; 70: 31-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27052182

ABSTRACT

OBJECTIVES: Displaying immunosuppressive and trophic properties, mesenchymal stem/stromal cells (MSC) are being evaluated as promising therapeutic options in a variety of autoimmune and degenerative diseases. Although benefits may be expected in systemic sclerosis (SSc), a rare autoimmune disease with fibrosis-related mortality, MSC have yet to be evaluated in this specific condition. While autologous approaches could be inappropriate because of functional alterations in MSC from patients, the objective of the present study was to evaluate allogeneic and xenogeneic MSC in the HOCl-induced model of diffuse SSc. We also questioned the source of human MSC and compared bone marrow- (hBM-MSC) and adipose-derived MSC (hASC). METHODS: HOCl-challenged BALB/c mice received intravenous injection of BM-MSC from syngeneic BALB/c or allogeneic C57BL/6 mice, and xenogeneic hBM-MSC or hASC (3 donors each). Skin thickness was measured during the experiment. At euthanasia, histology, immunostaining, collagen determination and RT-qPCR were performed in skin and lungs. RESULTS: Xenogeneic hBM-MSC were as effective as allogeneic or syngeneic BM-MSC in decreasing skin thickness, expression of Col1, Col3, α-Sma transcripts, and collagen content in skin and lungs. This anti-fibrotic effect was not associated with MSC migration to injured skin or with long-term MSC survival. Interestingly, compared with hBM-MSC, hASC were significantly more efficient in reducing skin fibrosis, which was related to a stronger reduction of TNFα, IL1ß, and enhanced ratio of Mmp1/Timp1 in skin and lung tissues. CONCLUSIONS: Using primary cells isolated from 3 murine and 6 human individuals, this preclinical study demonstrated similar therapeutic effects using allogeneic or xenogeneic BM-MSC while ASC exerted potent anti-inflammatory and remodeling properties. This sets the proof-of-concept prompting to evaluate the therapeutic efficacy of allogeneic ASC in SSc patients.


Subject(s)
Adipose Tissue/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Animals , Biomarkers , Cell Culture Techniques , Cell Movement , Cells, Cultured , Disease Models, Animal , Fibrosis , Gene Expression , Humans , Lung/metabolism , Lung/pathology , Mesenchymal Stem Cells/cytology , Mice , Scleroderma, Systemic/etiology , Scleroderma, Systemic/therapy , Skin/metabolism , Skin/pathology
20.
Biomaterials ; 88: 60-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26945456

ABSTRACT

In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFß3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFß3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration.


Subject(s)
Chondrogenesis/drug effects , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Osteoarthritis/therapy , Tissue Scaffolds/chemistry , Transforming Growth Factor beta3/administration & dosage , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cells, Cultured , Drug Carriers/chemistry , Humans , Knee Joint/drug effects , Knee Joint/pathology , Lactic Acid/chemistry , Mesenchymal Stem Cells/cytology , Mice , Mice, SCID , Microspheres , Osteoarthritis/pathology , Poloxamer/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Transforming Growth Factor beta3/pharmacology , Transforming Growth Factor beta3/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...