Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
BMC Med Inform Decis Mak ; 24(Suppl 5): 262, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289714

ABSTRACT

BACKGROUND: Applying graph convolutional networks (GCN) to the classification of free-form natural language texts leveraged by graph-of-words features (TextGCN) was studied and confirmed to be an effective means of describing complex natural language texts. However, the text classification models based on the TextGCN possess weaknesses in terms of memory consumption and model dissemination and distribution. In this paper, we present a fast message passing network (FastMPN), implementing a GCN with message passing architecture that provides versatility and flexibility by allowing trainable node embedding and edge weights, helping the GCN model find the better solution. We applied the FastMPN model to the task of clinical information extraction from cancer pathology reports, extracting the following six properties: main site, subsite, laterality, histology, behavior, and grade. RESULTS: We evaluated the clinical task performance of the FastMPN models in terms of micro- and macro-averaged F1 scores. A comparison was performed with the multi-task convolutional neural network (MT-CNN) model. Results show that the FastMPN model is equivalent to or better than the MT-CNN. CONCLUSIONS: Our implementation revealed that our FastMPN model, which is based on the PyTorch platform, can train a large corpus (667,290 training samples) with 202,373 unique words in less than 3 minutes per epoch using one NVIDIA V100 hardware accelerator. Our experiments demonstrated that using this implementation, the clinical task performance scores of information extraction related to tumors from cancer pathology reports were highly competitive.


Subject(s)
Natural Language Processing , Neoplasms , Neural Networks, Computer , Humans , Neoplasms/classification , Data Mining
2.
J Natl Cancer Inst Monogr ; 2024(65): 145-151, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39102883

ABSTRACT

The National Cancer Institute and the Department of Energy strategic partnership applies advanced computing and predictive machine learning and deep learning models to automate the capture of information from unstructured clinical text for inclusion in cancer registries. Applications include extraction of key data elements from pathology reports, determination of whether a pathology or radiology report is related to cancer, extraction of relevant biomarker information, and identification of recurrence. With the growing complexity of cancer diagnosis and treatment, capturing essential information with purely manual methods is increasingly difficult. These new methods for applying advanced computational capabilities to automate data extraction represent an opportunity to close critical information gaps and create a nimble, flexible platform on which new information sources, such as genomics, can be added. This will ultimately provide a deeper understanding of the drivers of cancer and outcomes in the population and increase the timeliness of reporting. These advances will enable better understanding of how real-world patients are treated and the outcomes associated with those treatments in the context of our complex medical and social environment.


Subject(s)
Deep Learning , Machine Learning , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/epidemiology , United States/epidemiology , Registries , National Cancer Institute (U.S.)
3.
Med Phys ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177300

ABSTRACT

A National Institutes of Health (NIH) and U.S. Department of Energy (DOE) Office of Science virtual workshop on shared general topics was held in July of 2021 and reported on in this publication in January of 2023. Following the inaugural 2021 joint meeting representatives from the DOE Office of Science and NIH met to discuss organizing a second joint workshop that would concentrate on radiation detection to bring together teams from both agencies and their grantee populations to stimulate collaboration and efficiency. To meet this scientific mission within the NIH and DOE radiation detection space, the organizers assembled workshop sessions covering the state-of-the-art in cameras, detectors, and sensors for radiation external and internal (diagnostic and therapeutic) to human, data acquisition and electronics, image reconstruction and processing, and the application of artificial intelligence. NIH and DOE are committed to continuing the process of convening a joint workshop every 12-24 months. This Special Report recaps the findings of this second workshop. Beyond showing only the innovations and areas of success, important gaps in our knowledge were defined and presented. We summarize by defining four areas of greatest opportunity and need that emerged from the unique, dynamic dialogue the in-person workshop provided the attendees.

4.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826407

ABSTRACT

The expansion of biobanks has significantly propelled genomic discoveries yet the sheer scale of data within these repositories poses formidable computational hurdles, particularly in handling extensive matrix operations required by prevailing statistical frameworks. In this work, we introduce computational optimizations to the SAIGE (Scalable and Accurate Implementation of Generalized Mixed Model) algorithm, notably employing a GPU-based distributed computing approach to tackle these challenges. We applied these optimizations to conduct a large-scale genome-wide association study (GWAS) across 2,068 phenotypes derived from electronic health records of 635,969 diverse participants from the Veterans Affairs (VA) Million Veteran Program (MVP). Our strategies enabled scaling up the analysis to over 6,000 nodes on the Department of Energy (DOE) Oak Ridge Leadership Computing Facility (OLCF) Summit High-Performance Computer (HPC), resulting in a 20-fold acceleration compared to the baseline model. We also provide a Docker container with our optimizations that was successfully used on multiple cloud infrastructures on UK Biobank and All of Us datasets where we showed significant time and cost benefits over the baseline SAIGE model.

5.
BJR Artif Intell ; 1(1): ubae006, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38828430

ABSTRACT

Innovation in medical imaging artificial intelligence (AI)/machine learning (ML) demands extensive data collection, algorithmic advancements, and rigorous performance assessments encompassing aspects such as generalizability, uncertainty, bias, fairness, trustworthiness, and interpretability. Achieving widespread integration of AI/ML algorithms into diverse clinical tasks will demand a steadfast commitment to overcoming issues in model design, development, and performance assessment. The complexities of AI/ML clinical translation present substantial challenges, requiring engagement with relevant stakeholders, assessment of cost-effectiveness for user and patient benefit, timely dissemination of information relevant to robust functioning throughout the AI/ML lifecycle, consideration of regulatory compliance, and feedback loops for real-world performance evidence. This commentary addresses several hurdles for the development and adoption of AI/ML technologies in medical imaging. Comprehensive attention to these underlying and often subtle factors is critical not only for tackling the challenges but also for exploring novel opportunities for the advancement of AI in radiology.

6.
BJR Artif Intell ; 1(1): ubae003, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38476957

ABSTRACT

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples. We also highlight what we see as the shared responsibility of manufacturers or vendors, regulators, healthcare systems, medical physicists, and clinicians to enact appropriate testing and oversight to ensure a safe and equitable transformation of medicine through AI.

7.
J Biomed Inform ; 149: 104576, 2024 01.
Article in English | MEDLINE | ID: mdl-38101690

ABSTRACT

INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we introduce multiple methods for selective classification to achieve a target level of accuracy on multiple classification tasks while minimizing the rejection amount-that is, the number of electronic pathology reports for which the model's predictions are unreliable. We evaluate the proposed methods by comparing our approach with the current in-house deep learning-based abstaining classifier. RESULTS: Overall, all the proposed selective classification methods effectively allow for achieving the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate. On in-distribution validation and holdout test data, with all the proposed methods, we achieve on all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex; nevertheless, in this case as well, the rejection rate from the best among the proposed methods achieving 97% accuracy or higher is lower than the rejection rate based on the DAC. CONCLUSIONS: We show that although both approaches can flag those samples that should be manually reviewed and labeled by human annotators, the newly proposed methods retain a larger fraction and do so without retraining-thus offering a reduced computational cost compared with the in-house deep learning-based abstaining classifier.


Subject(s)
Deep Learning , Humans , Uncertainty , Neural Networks, Computer , Algorithms , Machine Learning
8.
Med Phys ; 50(3): e53-e61, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36705550

ABSTRACT

Over several months, representatives from the U.S. Department of Energy (DOE) Office of Science and National Institutes of Health (NIH) had a number of meetings that lead to the conclusion that innovations in the Nation's health care could be realized by more directed interactions between NIH and DOE. It became clear that the expertise amassed and instrumentation advances developed at the DOE physical science laboratories to enable cutting-edge research in particle physics could also feed innovation in medical healthcare. To meet their scientific mission, the DOE laboratories created advances in such technologies as particle beam generation, radioisotope production, high-energy particle detection and imaging, superconducting particle accelerators, superconducting magnets, cryogenics, high-speed electronics, artificial intelligence, and big data. To move forward, NIH and DOE initiated the process of convening a joint workshop which occurred on July 12th and 13th, 2021. This Special Report presents a summary of the findings of the collaborative workshop and introduces the goals of the next one.


Subject(s)
Biomedical Research , Natural Science Disciplines , United States , Artificial Intelligence , National Institutes of Health (U.S.) , Laboratories
9.
Med Phys ; 50(2): e1-e24, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565447

ABSTRACT

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep learning (DL) techniques, have enabled broad application of these methods in health care. The promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) development and applications using both "traditional" machine learning methods and newer DL-based methods. We use the term CAD-AI to refer to this expanded clinical decision support environment that uses traditional and DL-based AI methods. Numerous studies have been published to date on the development of machine learning tools for computer-aided, or AI-assisted, clinical tasks. However, most of these machine learning models are not ready for clinical deployment. It is of paramount importance to ensure that a clinical decision support tool undergoes proper training and rigorous validation of its generalizability and robustness before adoption for patient care in the clinic. To address these important issues, the American Association of Physicists in Medicine (AAPM) Computer-Aided Image Analysis Subcommittee (CADSC) is charged, in part, to develop recommendations on practices and standards for the development and performance assessment of computer-aided decision support systems. The committee has previously published two opinion papers on the evaluation of CAD systems and issues associated with user training and quality assurance of these systems in the clinic. With machine learning techniques continuing to evolve and CAD applications expanding to new stages of the patient care process, the current task group report considers the broader issues common to the development of most, if not all, CAD-AI applications and their translation from the bench to the clinic. The goal is to bring attention to the proper training and validation of machine learning algorithms that may improve their generalizability and reliability and accelerate the adoption of CAD-AI systems for clinical decision support.


Subject(s)
Artificial Intelligence , Diagnosis, Computer-Assisted , Humans , Reproducibility of Results , Diagnosis, Computer-Assisted/methods , Diagnostic Imaging , Machine Learning
10.
JAMIA Open ; 5(3): ooac075, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36110150

ABSTRACT

Objective: We aim to reduce overfitting and model overconfidence by distilling the knowledge of an ensemble of deep learning models into a single model for the classification of cancer pathology reports. Materials and Methods: We consider the text classification problem that involves 5 individual tasks. The baseline model consists of a multitask convolutional neural network (MtCNN), and the implemented ensemble (teacher) consists of 1000 MtCNNs. We performed knowledge transfer by training a single model (student) with soft labels derived through the aggregation of ensemble predictions. We evaluate performance based on accuracy and abstention rates by using softmax thresholding. Results: The student model outperforms the baseline MtCNN in terms of abstention rates and accuracy, thereby allowing the model to be used with a larger volume of documents when deployed. The highest boost was observed for subsite and histology, for which the student model classified an additional 1.81% reports for subsite and 3.33% reports for histology. Discussion: Ensemble predictions provide a useful strategy for quantifying the uncertainty inherent in labeled data and thereby enable the construction of soft labels with estimated probabilities for multiple classes for a given document. Training models with the derived soft labels reduce model confidence in difficult-to-classify documents, thereby leading to a reduction in the number of highly confident wrong predictions. Conclusions: Ensemble model distillation is a simple tool to reduce model overconfidence in problems with extreme class imbalance and noisy datasets. These methods can facilitate the deployment of deep learning models in high-risk domains with low computational resources where minimizing inference time is required.

11.
Cancer Biomark ; 33(2): 185-198, 2022.
Article in English | MEDLINE | ID: mdl-35213361

ABSTRACT

BACKGROUND: With the use of artificial intelligence and machine learning techniques for biomedical informatics, security and privacy concerns over the data and subject identities have also become an important issue and essential research topic. Without intentional safeguards, machine learning models may find patterns and features to improve task performance that are associated with private personal information. OBJECTIVE: The privacy vulnerability of deep learning models for information extraction from medical textural contents needs to be quantified since the models are exposed to private health information and personally identifiable information. The objective of the study is to quantify the privacy vulnerability of the deep learning models for natural language processing and explore a proper way of securing patients' information to mitigate confidentiality breaches. METHODS: The target model is the multitask convolutional neural network for information extraction from cancer pathology reports, where the data for training the model are from multiple state population-based cancer registries. This study proposes the following schemes to collect vocabularies from the cancer pathology reports; (a) words appearing in multiple registries, and (b) words that have higher mutual information. We performed membership inference attacks on the models in high-performance computing environments. RESULTS: The comparison outcomes suggest that the proposed vocabulary selection methods resulted in lower privacy vulnerability while maintaining the same level of clinical task performance.


Subject(s)
Confidentiality , Deep Learning , Information Storage and Retrieval/methods , Natural Language Processing , Neoplasms/epidemiology , Artificial Intelligence , Deep Learning/standards , Humans , Neoplasms/pathology , Registries
12.
IEEE J Biomed Health Inform ; 26(6): 2796-2803, 2022 06.
Article in English | MEDLINE | ID: mdl-35020599

ABSTRACT

Recent applications ofdeep learning have shown promising results for classifying unstructured text in the healthcare domain. However, the reliability of models in production settings has been hindered by imbalanced data sets in which a small subset of the classes dominate. In the absence of adequate training data, rare classes necessitate additional model constraints for robust performance. Here, we present a strategy for incorporating short sequences of text (i.e. keywords) into training to boost model accuracy on rare classes. In our approach, we assemble a set of keywords, including short phrases, associated with each class. The keywords are then used as additional data during each batch of model training, resulting in a training loss that has contributions from both raw data and keywords. We evaluate our approach on classification of cancer pathology reports, which shows a substantial increase in model performance for rare classes. Furthermore, we analyze the impact of keywords on model output probabilities for bigrams, providing a straightforward method to identify model difficulties for limited training data.


Subject(s)
Reproducibility of Results , Data Collection , Humans
13.
Radiat Res ; 197(4): 434-445, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35090025

ABSTRACT

With a widely attended virtual kickoff event on January 29, 2021, the National Cancer Institute (NCI) and the Department of Energy (DOE) launched a series of 4 interactive, interdisciplinary workshops-and a final concluding "World Café" on March 29, 2021-focused on advancing computational approaches for predictive oncology in the clinical and research domains of radiation oncology. These events reflect 3,870 human hours of virtual engagement with representation from 8 DOE national laboratories and the Frederick National Laboratory for Cancer Research (FNL), 4 research institutes, 5 cancer centers, 17 medical schools and teaching hospitals, 5 companies, 5 federal agencies, 3 research centers, and 27 universities. Here we summarize the workshops by first describing the background for the workshops. Participants identified twelve key questions-and collaborative parallel ideas-as the focus of work going forward to advance the field. These were then used to define short-term and longer-term "Blue Sky" goals. In addition, the group determined key success factors for predictive oncology in the context of radiation oncology, if not the future of all of medicine. These are: cross-discipline collaboration, targeted talent development, development of mechanistic mathematical and computational models and tools, and access to high-quality multiscale data that bridges mechanisms to phenotype. The workshop participants reported feeling energized and highly motivated to pursue next steps together to address the unmet needs in radiation oncology specifically and in cancer research generally and that NCI and DOE project goals align at the convergence of radiation therapy and advanced computing.


Subject(s)
Radiation Oncology , Academies and Institutes , Humans , National Cancer Institute (U.S.) , Radiation Oncology/education , United States
14.
J Biomed Inform ; 125: 103957, 2022 01.
Article in English | MEDLINE | ID: mdl-34823030

ABSTRACT

In the last decade, the widespread adoption of electronic health record documentation has created huge opportunities for information mining. Natural language processing (NLP) techniques using machine and deep learning are becoming increasingly widespread for information extraction tasks from unstructured clinical notes. Disparities in performance when deploying machine learning models in the real world have recently received considerable attention. In the clinical NLP domain, the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports under natural distribution shifts remains understudied. In this research, we aim to quantify and improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets resulting from the natural evolution of clinical text in pathology reports. We identified class imbalance due to different prevalence of cancer types as one of the sources of performance drop and analyzed the impact of previous methods for addressing class imbalance when deploying models in real-world domains. Our results show that our novel class-specialized ensemble technique outperforms other methods for the classification of rare cancer types in terms of macro F1 scores. We also found that traditional ensemble methods perform better in top classes, leading to higher micro F1 scores. Based on our findings, we formulate a series of recommendations for other ML practitioners on how to build robust models with extremely imbalanced datasets in biomedical NLP applications.


Subject(s)
Natural Language Processing , Neoplasms , Electronic Health Records , Humans , Machine Learning , Neural Networks, Computer
15.
Nat Rev Cancer ; 21(12): 747-752, 2021 12.
Article in English | MEDLINE | ID: mdl-34535775

ABSTRACT

STANDFIRST: Artificial intelligence and machine learning techniques are breaking into biomedical research and health care, which importantly includes cancer research and oncology, where the potential applications are vast. These include detection and diagnosis of cancer, subtype classification, optimization of cancer treatment and identification of new therapeutic targets in drug discovery. While big data used to train machine learning models may already exist, leveraging this opportunity to realize the full promise of artificial intelligence in both the cancer research space and the clinical space will first require significant obstacles to be surmounted. In this Viewpoint article, we asked four experts for their opinions on how we can begin to implement artificial intelligence while ensuring standards are maintained so as transform cancer diagnosis and the prognosis and treatment of patients with cancer and to drive biological discovery.


Subject(s)
Biomedical Research , Neoplasms , Artificial Intelligence , Drug Discovery/methods , Humans , Machine Learning , Medical Oncology , Neoplasms/diagnosis , Neoplasms/therapy
16.
Am J Epidemiol ; 190(11): 2405-2419, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34165150

ABSTRACT

Hydroxychloroquine (HCQ) was proposed as an early therapy for coronavirus disease 2019 (COVID-19) after in vitro studies indicated possible benefit. Previous in vivo observational studies have presented conflicting results, though recent randomized clinical trials have reported no benefit from HCQ among patients hospitalized with COVID-19. We examined the effects of HCQ alone and in combination with azithromycin in a hospitalized population of US veterans with COVID-19, using a propensity score-adjusted survival analysis with imputation of missing data. According to electronic health record data from the US Department of Veterans Affairs health care system, 64,055 US Veterans were tested for the virus that causes COVID-19 between March 1, 2020 and April 30, 2020. Of the 7,193 veterans who tested positive, 2,809 were hospitalized, and 657 individuals were prescribed HCQ within the first 48-hours of hospitalization for the treatment of COVID-19. There was no apparent benefit associated with HCQ receipt, alone or in combination with azithromycin, and there was an increased risk of intubation when HCQ was used in combination with azithromycin (hazard ratio = 1.55; 95% confidence interval: 1.07, 2.24). In conclusion, we assessed the effectiveness of HCQ with or without azithromycin in treatment of patients hospitalized with COVID-19, using a national sample of the US veteran population. Using rigorous study design and analytic methods to reduce confounding and bias, we found no evidence of a survival benefit from the administration of HCQ.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , Hospitalization/statistics & numerical data , Hydroxychloroquine/therapeutic use , Veterans/statistics & numerical data , Aged , Aged, 80 and over , Anti-Bacterial Agents/adverse effects , Azithromycin/adverse effects , COVID-19/mortality , Drug Therapy, Combination , Female , Humans , Hydroxychloroquine/adverse effects , Intention to Treat Analysis , Machine Learning , Male , Middle Aged , Pharmacoepidemiology , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , United States/epidemiology
17.
BMC Bioinformatics ; 22(1): 113, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750288

ABSTRACT

BACKGROUND: Automated text classification has many important applications in the clinical setting; however, obtaining labelled data for training machine learning and deep learning models is often difficult and expensive. Active learning techniques may mitigate this challenge by reducing the amount of labelled data required to effectively train a model. In this study, we analyze the effectiveness of 11 active learning algorithms on classifying subsite and histology from cancer pathology reports using a Convolutional Neural Network as the text classification model. RESULTS: We compare the performance of each active learning strategy using two differently sized datasets and two different classification tasks. Our results show that on all tasks and dataset sizes, all active learning strategies except diversity-sampling strategies outperformed random sampling, i.e., no active learning. On our large dataset (15K initial labelled samples, adding 15K additional labelled samples each iteration of active learning), there was no clear winner between the different active learning strategies. On our small dataset (1K initial labelled samples, adding 1K additional labelled samples each iteration of active learning), marginal and ratio uncertainty sampling performed better than all other active learning techniques. We found that compared to random sampling, active learning strongly helps performance on rare classes by focusing on underrepresented classes. CONCLUSIONS: Active learning can save annotation cost by helping human annotators efficiently and intelligently select which samples to label. Our results show that a dataset constructed using effective active learning techniques requires less than half the amount of labelled data to achieve the same performance as a dataset constructed using random sampling.


Subject(s)
Machine Learning , Neoplasms , Algorithms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neural Networks, Computer
18.
PLoS One ; 16(3): e0248128, 2021.
Article in English | MEDLINE | ID: mdl-33730088

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a significant global threat. However, despite urgent need, there remains uncertainty surrounding best practices for pharmaceutical interventions to treat COVID-19. In particular, conflicting evidence has emerged surrounding the use of hydroxychloroquine and azithromycin, alone or in combination, for COVID-19. The COVID-19 Evidence Accelerator convened by the Reagan-Udall Foundation for the FDA, in collaboration with Friends of Cancer Research, assembled experts from the health systems research, regulatory science, data science, and epidemiology to participate in a large parallel analysis of different data sets to further explore the effectiveness of these treatments. METHODS: Electronic health record (EHR) and claims data were extracted from seven separate databases. Parallel analyses were undertaken on data extracted from each source. Each analysis examined time to mortality in hospitalized patients treated with hydroxychloroquine, azithromycin, and the two in combination as compared to patients not treated with either drug. Cox proportional hazards models were used, and propensity score methods were undertaken to adjust for confounding. Frequencies of adverse events in each treatment group were also examined. RESULTS: Neither hydroxychloroquine nor azithromycin, alone or in combination, were significantly associated with time to mortality among hospitalized COVID-19 patients. No treatment groups appeared to have an elevated risk of adverse events. CONCLUSION: Administration of hydroxychloroquine, azithromycin, and their combination appeared to have no effect on time to mortality in hospitalized COVID-19 patients. Continued research is needed to clarify best practices surrounding treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Data Management/methods , Drug Therapy, Combination/methods , Female , Hospitalization , Humans , Male , SARS-CoV-2/drug effects
19.
IEEE J Biomed Health Inform ; 25(9): 3596-3607, 2021 09.
Article in English | MEDLINE | ID: mdl-33635801

ABSTRACT

Bidirectional Encoder Representations from Transformers (BERT) and BERT-based approaches are the current state-of-the-art in many natural language processing (NLP) tasks; however, their application to document classification on long clinical texts is limited. In this work, we introduce four methods to scale BERT, which by default can only handle input sequences up to approximately 400 words long, to perform document classification on clinical texts several thousand words long. We compare these methods against two much simpler architectures - a word-level convolutional neural network and a hierarchical self-attention network - and show that BERT often cannot beat these simpler baselines when classifying MIMIC-III discharge summaries and SEER cancer pathology reports. In our analysis, we show that two key components of BERT - pretraining and WordPiece tokenization - may actually be inhibiting BERT's performance on clinical text classification tasks where the input document is several thousand words long and where correctly identifying labels may depend more on identifying a few key words or phrases rather than understanding the contextual meaning of sequences of text.


Subject(s)
Natural Language Processing , Neural Networks, Computer , Humans
20.
IEEE Trans Emerg Top Comput ; 9(3): 1219-1230, 2021.
Article in English | MEDLINE | ID: mdl-36117774

ABSTRACT

Population cancer registries can benefit from Deep Learning (DL) to automatically extract cancer characteristics from the high volume of unstructured pathology text reports they process annually. The success of DL to tackle this and other real-world problems is proportional to the availability of large labeled datasets for model training. Although collaboration among cancer registries is essential to fully exploit the promise of DL, privacy and confidentiality concerns are main obstacles for data sharing across cancer registries. Moreover, DL for natural language processing (NLP) requires sharing a vocabulary dictionary for the embedding layer which may contain patient identifiers. Thus, even distributing the trained models across cancer registries causes a privacy violation issue. In this paper, we propose DL NLP model distribution via privacy-preserving transfer learning approaches without sharing sensitive data. These approaches are used to distribute a multitask convolutional neural network (MT-CNN) NLP model among cancer registries. The model is trained to extract six key cancer characteristics - tumor site, subsite, laterality, behavior, histology, and grade - from cancer pathology reports. Using 410,064 pathology documents from two cancer registries, we compare our proposed approach to conventional transfer learning without privacy-preserving, single-registry models, and a model trained on centrally hosted data. The results show that transfer learning approaches including data sharing and model distribution outperform significantly the single-registry model. In addition, the best performing privacy-preserving model distribution approach achieves statistically indistinguishable average micro- and macro-F1 scores across all extraction tasks (0.823,0.580) as compared to the centralized model (0.827,0.585).

SELECTION OF CITATIONS
SEARCH DETAIL