Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Open Med Inform J ; 11: 44-51, 2017.
Article in English | MEDLINE | ID: mdl-29204227

ABSTRACT

BACKGROUND: High correction bracing is the most effective conservative treatment for patients with scoliosis during growth. Still today braces for the treatment of scoliosis are made by casting patients while computer aided design (CAD) and computer aided manufacturing (CAM) is available with all possibilities to standardize pattern specific brace treatment and improve wearing comfort. OBJECTIVE: CAD / CAM brace production mainly relies on carving a polyurethane foam model which is the basis for vacuuming a polyethylene (PE) or polypropylene (PP) brace. Purpose of this short communication is to describe the workflow currently used and to outline future requirements with respect to 3D printing technology. METHOD: Description of the steps of virtual brace adjustment as available today are content of this paper as well as an outline of the great potential there is for the future 3D printing technology. RESULTS: For 3D printing of scoliosis braces it is necessary to establish easy to use software plug-ins in order to allow adding 3D printing technology to the current workflow of virtual CAD / CAM brace adjustment. Textures and structures can be added to the brace models at certain well defined locations offering the potential of more wearing comfort without losing in-brace correction. CONCLUSIONS: Advances have to be made in the field of CAD / CAM software tools with respect to design and generation of individually structured brace models based on currently well established and standardized scoliosis brace libraries.

2.
Open Orthop J ; 11: 1558-1567, 2017.
Article in English | MEDLINE | ID: mdl-29399229

ABSTRACT

INTRODUCTION: There is a growing resistance from patients and their families to spinal fusion surgery for scoliosis. Due to inconclusive evidence that surgery has a long-term effect on scoliosis and/or improves the quality of life for patients with scoliosis, there is a need to extend the conservative perspective of treatment to patients with curvatures greater than 40 degrees. For that reason, a prospective cohort study was initiated to determine the effectiveness of the Gensingen brace (a Cheneau-style TLSO) in preventing progression in skeletally immature patients. MATERIALS AND METHODS: Since 2011, fifty-five patients have been enrolled in this prospective cohort study. This report includes the mid-term results of twenty-five of these patients, who have a minimum follow-up of 18 months and an average follow-up of 30.4 months (SD 9.2). The twenty-five patients had the following characteristics at the start of treatment: Cobb angle: 49° (SD 8.4; 40º-71º); 12.4 years old (SD 0.82); Risser: 0.84 (SD 0.94; 0-2). A z-test was used to compare the success rate in this cohort to the success rate in the prospective braced cohort from BrAIST. RESULTS: After follow-up, the average Cobb angle was 44.2° (SD 12.9). Two patients progressed, 12 patients were able to achieve halted progression, and eleven patients improved. Angle of trunk rotation (ATR) decreased from 12.2 to 10.1 degrees in the thoracic spine (p = 0.11) while the ATR decreased from 4.7 to 3.6 degrees in the lumbar spine (p = 0.0074). When comparing the success rate of the BrAIST cohort with the success rate of patients in this cohort, the difference was statistically significant (z = -3.041; p = 0.01). CONCLUSION: Conservative brace treatment using the Gensingen brace was successful in 92% of cases of patients with AIS of 40 degrees and higher. This is a significant improvement compared to the results attained in the BrAIST study (72%). Reduction of the ATR shows that postural improvement is also possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...