Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365250

ABSTRACT

Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.


Subject(s)
Nitrogen Fixation , Populus , Nitrogen Fixation/physiology , Populus/genetics , Populus/metabolism , Endophytes/genetics , Oxidoreductases/genetics , In Situ Hybridization, Fluorescence , Nitrogenase/genetics , Nitrogenase/metabolism , Nitrogen
2.
Environ Sci Technol ; 57(23): 8728-8738, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37256822

ABSTRACT

Phytoremediation, a cost-effective, eco-friendly alternative to conventional remediation, could expand efforts to remediate arsenic-contaminated soils. As with other pollutants, the plant microbiome may improve phytoremediation outcomes for arsenic-contaminated sites. We used in vitro and in silico methods to compare the arsenic resistance mechanisms, synthesis of extracellular polymeric substances (EPS), biofilm formation, and plant growth-promoting abilities of the endophytes Pseudomonas sp. PD9R and Rahnella laticis PD12R. PD12R, which tolerates arsenate (As(V)) and arsenite (As(III)) to concentrations fivefold greater than PD9R, synthesizes high volumes of EPS in response to arsenic, and sequesters arsenic in the capsular EPS and cells. While arsenic exposure induced EPS synthesis in both strains, only PD12R continued to form biofilms at high As(III) and As(V) concentrations. The effects of endophyte inoculation on Arabidopsis growth varied by strain and As(V) concentration, and PD9R had positive effect on plants exposed to low levels of arsenic. Comparative genomic analyses exploring the EPS synthesis and arsenic resistance mechanisms against other Pseudomonas and Rahnella strains suggest that both strains possess atypical arsenic resistance mechanisms from other plant-associated strains, while the configuration of the EPS synthesis systems appeared to be more broadly distributed among plant- and non-plant-associated strains.


Subject(s)
Arsenic , Rahnella , Soil Pollutants , Extracellular Polymeric Substance Matrix/chemistry , Endophytes , Pseudomonas , Biodegradation, Environmental , Biofilms , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...