Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Microbiol ; 14: 1266416, 2023.
Article in English | MEDLINE | ID: mdl-38075897

ABSTRACT

Antimicrobial resistance is a major threat to human and animal health and accounted for up to 4.5 million deaths worldwide in 2019. Asymptomatic colonization of the digestive tract by multidrug resistant (multi-resistant) bacteria such as extended-spectrum beta-lactamase-, or carbapenemase- producing Enterobacterales is (i) a risk factor for infection by these multi-resistant bacteria, (ii) a risk factor of dissemination of these multi-resistant bacteria among patients and in the community, and (iii) allows the exchange of resistance genes between bacteria. Hence, decolonization or reduction of the gastrointestinal tract colonization of these multi-resistant bacteria needs to be urgently explored. Developing new non-antibiotic strategies to limit or eradicate multi-resistant bacteria carriage without globally disrupting the microbiota is considered a priority to fight against antibiotic resistance. Probiotics or Fecal Microbiota Transplantation are alternative strategies to antibiotics that have been considered to decolonize intestinal tract from MDR bacteria but there is currently no evidence demonstrating their efficacy. Lytic bacteriophages are viruses that kill bacteria and therefore could be considered as a promising strategy to combat antibiotic resistance. Successful decolonization by bacteriophages has already been observed clinically. Here, we discuss the current alternative strategies considered to decolonize the digestive tract of multidrug resistant bacteria, briefly describing probiotics and fecal microbiota transplantation approaches, and then detail the in vivo and in vitro studies using bacteriophages, while discussing their limits regarding the animal models used, the characteristics of phages used and their activity in regards of the gut anatomy.

2.
Article in English | MEDLINE | ID: mdl-36998141

ABSTRACT

BACKGROUND AND AIMS: The host micronutrient milieu is a compilation of factors of both endogenous and exogenous origin. This milieu shapes the host's immune responses and can control the inflammatory response of the host when infected. Among vitamins, B12 plays a key role in the defense process because there is intense competition for it between pathogenic invaders and infected host cells. Alcoholic beverages and antibiotics can cause biological (in vivo) interferences that affect pathogenhost crosstalk. Ethanol is known to interfere with the absorption, distribution, and excretion of vitamin B12 in men and animals. However, the molecular mechanisms underlying this backdrop are not fully understood. Here, we explored how Gram-positive ethanol-producing and Gram-negative vitamin B12- producing microbes of the infected milieu interact to influence biomarkers of host cell defense responses in absorbing, digesting, and defensive cells. MATERIAL AND METHODS: We investigated two different cell types of colon and liver origin, hepatic-like Huh7 cells and HT- 29/B6 colon cells. To assess the ability of secreted factors from bacteria to exert influence on co-cultured cell's secretion of host-defense markers in response to invading pathogens, cocultured human colonic HT-29/B6 and human hepatic Huh-7 (hereafter Huh7) cells were stimulated or not with Klebsiella pneumoniae 52145 for 24 h in the presence or absence of either Weissella confusa strain NRRL-B-14171 (as a Gram-positive producer of ethanol), Limosilactobacillus reuteri 20016 (as a Gram-positive producer of vitamin B12), or Pseudomonas nitroreducens 1650 (as a Gram-negative producer of vitamin B12). After stimulation, molecular functional biomarkers of host cell defense responses including total MMP-1, lysozyme activity, ALP, and IL-25 were measured. RESULTS: While simultaneously reducing IL-25 secretion, Kp52145 alone significantly elicited MMP-1, lysozyme, and ALP secretion from co-cultured cells, as compared to no treatment. When compared with Kp 52145 stimulation alone, Pn1650 significantly potentiated MMP-1 and lysozyme secretions from Kp 52145-stimulated co-cultured cells by 29.7% and 67.4%, respectively. Simultaneously, a potentiated suppression (an overall decrease of 77.3%) in IL-25 secretion occurred 24 hours after Kn52145 plus Pn1650 administration. Compared to Kp52145-stimulation alone, treatment with W. confusa NRRL-B-14171 and Kp52145-stimulated co-cultured cells was associated with significant additive induction of MMP-1 and lysozyme secretions. However, compared to Kp52145-stimulation alone, W. confusa NRRL-B-14171 treatment significantly potentiated Kp52145-induced suppression of IL-25. Using the same condition as mentioned above and compared to Kp52145-stimulation alone, L. reuteri 20016 treatment altered the secretion pattern in response to Kp52145: L. reuteri 20016-treated cells displayed less aversive responses towards Kp52145, suggesting that L. reuteri 20016 modulation may act differently on Kp52145 - induced signaling. CONCLUSION: Gram-negative and Gram-positive vitamin B12- producing bacteria differently affect the secretion of key immune biomarkers in co-cultured HT-29/B6 and Huh7 cells following exposure to Kp52145. Ethanol-producing bacteria additively potentiate pathogenicity and inflammatory responses upon infection. To confirm the biological consequences of these effects on human gut microbiota and health, further studies are warranted, incorporating ex vivo studies of human colon samples and host biomarkers such as cytohistological, molecular, or biochemical measurements.


Subject(s)
Ethanol , Matrix Metalloproteinase 1 , Male , Animals , Humans , Muramidase , Colon , Vitamin B 12
3.
Environ Sci Pollut Res Int ; 27(33): 41046-41051, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31902080

ABSTRACT

Plants were sampled from four different types of chlordecone-contaminated land in Guadeloupe (West Indies). The objective was to investigate the importance of biological and agri-environmental parameters in the ability of plants to bioaccumulate chlordecone. Among the plant traits studied, only the growth habit significantly affected chlordecone transfer, since prostrate plants concentrated more chlordecone than erect plants. In addition, intensification of land use has led to a significant increase in the amount of chlordecone absorbed by plants. The use of Bayesian networks uncovers some hypothesis and identifies paths for reflection and possible studies to identify and quantify relationships that explain our data. Graphical abstract.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Bayes Theorem , Bioaccumulation , Chlordecone/analysis , Guadeloupe , Insecticides/analysis , Soil Pollutants/analysis , West Indies
4.
Article in English | MEDLINE | ID: mdl-31024905

ABSTRACT

Early detection of tumors is today a major challenge and requires sensitive imaging methodologies coupled with new efficient probes. In vivo optical bioluminescence imaging has been widely used in the field of preclinical oncology to visualize tumors and several cancer cell lines have been genetically modified to provide bioluminescence signals. However, the light emitted by the majority of commonly used luciferases is usually in the blue part of the visible spectrum, where tissue absorption is still very high, making deep tissue imaging non-optimal, and calling for optimized optical imaging methodologies. We have previously shown that red-shifting of bioluminescence signal by Fluorescence Unbound Excitation from Luminescence (FUEL) is a mean to increase bioluminescence signal sensitivity detection in vivo. Here, we applied FUEL to tumor detection in two different subcutaneous tumor models: the auto-luminescent human embryonic kidney (HEK293) cell line and the murine B16-F10 melanoma cell line previously transfected with a plasmid encoding the Luc2 firefly luciferase. Tumor size and bioluminescence were measured over time and tumor vascularization characterized. We then locally injected near infrared emitting Quantum Dots (NIR QDs) in the tumor site and observed a red-shifting of bioluminescence signal by (FUEL) indicating that FUEL could be used to allow deeper tumor detection in mice.

5.
J Vis Exp ; (143)2019 01 07.
Article in English | MEDLINE | ID: mdl-30663636

ABSTRACT

Here, we provide a protocol involving the use of MUB40, a synthesized peptide with the ability to bind glycosylated lactoferrin stored at high concentrations in specific and tertiary granules of neutrophils. This protocol details how MUB40 conjugated directly to a fluorophore can be used to stain neutrophils in fixed/permeabilized tissues as well as how this can be used in live-cell imaging to assay for neutrophil activation and de-granulation. Neutrophil detection methods are limited to species-specific monoclonal antibodies, which are not always suitable for certain applications. MUB40 does not penetrate the cell membrane and is thus excluded from lactoferrin stored in non-activated/non-permeabilized neutrophils. MUB40 has the added benefit of recognizing lactoferrin from a broad host range, making it especially useful for comparing results in studies involving multiple research models, reducing the number of duplicate reagents, and simplifying protocols through single-step staining.


Subject(s)
Inflammation Mediators/metabolism , Neutrophils/immunology , Peptides/metabolism , Humans
6.
PLoS Negl Trop Dis ; 12(1): e0006201, 2018 01.
Article in English | MEDLINE | ID: mdl-29381692

ABSTRACT

Rhinoscleroma is a human specific chronic granulomatous infection of the nose and upper airways caused by the Gram-negative bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. Although considered a rare disease, it is endemic in low-income countries where hygienic conditions are poor. A hallmark of this pathology is the appearance of atypical foamy monocytes called Mikulicz cells. However, the pathogenesis of rhinoscleroma remains poorly investigated. Capsule polysaccharide (CPS) is a prominent virulence factor in bacteria. All K. rhinoscleromatis strains are of K3 serotype, suggesting that CPS can be an important driver of rhinoscleroma disease. In this study, we describe the creation of the first mutant of K. rhinoscleromatis, inactivated in its capsule export machinery. Using a murine model recapitulating the formation of Mikulicz cells in lungs, we observed that a K. rhinoscleromatis CPS mutant (KR cps-) is strongly attenuated and that mice infected with a high dose of KR cps- are still able to induce Mikulicz cells formation, unlike a K. pneumoniae capsule mutant, and to partially recapitulate the characteristic strong production of IL-10. Altogether, the results of this study show that CPS is a virulence factor of K. rhinoscleromatis not involved in the specific appearance of Mikulicz cells.


Subject(s)
Bacterial Capsules/metabolism , Klebsiella pneumoniae/pathogenicity , Monocytes/immunology , Rhinoscleroma/physiopathology , Virulence Factors/metabolism , Animals , Bacterial Capsules/genetics , Disease Models, Animal , Gene Deletion , Klebsiella pneumoniae/genetics , Mice , Virulence Factors/genetics
7.
BMC Genomics ; 18(1): 525, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28697749

ABSTRACT

BACKGROUND: A restricted set of aerobic bacteria dominated by the Acinetobacter genus was identified in murine intestinal colonic crypts. The vicinity of such bacteria with intestinal stem cells could indicate that they protect the crypt against cytotoxic and genotoxic signals. Genome analyses of these bacteria were performed to better appreciate their biodegradative capacities. RESULTS: Two taxonomically different clusters of Acinetobacter were isolated from murine proximal colonic crypts, one was identified as A. modestus and the other as A. radioresistens. Their identification was performed through biochemical parameters and housekeeping gene sequencing. After selection of one strain of each cluster (A. modestus CM11G and A. radioresistens CM38.2), comparative genomic analysis was performed on whole-genome sequencing data. The antibiotic resistance pattern of these two strains is different, in line with the many genes involved in resistance to heavy metals identified in both genomes. Moreover whereas the operon benABCDE involved in benzoate metabolism is encoded by the two genomes, the operon antABC encoding the anthranilate dioxygenase, and the phenol hydroxylase gene cluster are absent in the A. modestus genomic sequence, indicating that the two strains have different capacities to metabolize xenobiotics. A common feature of the two strains is the presence of a type IV pili system, and the presence of genes encoding proteins pertaining to secretion systems such as Type I and Type II secretion systems. CONCLUSIONS: Our comparative genomic analysis revealed that different Acinetobacter isolated from the same biological niche, even if they share a large majority of genes, possess unique features that could play a specific role in the protection of the intestinal crypt.


Subject(s)
Acinetobacter/genetics , Acinetobacter/isolation & purification , Colon/microbiology , Genomics , Acinetobacter/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mice , Phylogeny , RNA, Ribosomal, 16S/genetics , Recombinases/genetics , Siderophores/metabolism , Xenobiotics/metabolism
8.
Genome Announc ; 4(6)2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27979948

ABSTRACT

We report here the complete genome sequence of Delftia tsuruhatensis CM13, isolated from murine proximal colonic tissue. The genome assembly using PacBio single-molecule real-time sequencing resulted in a single scaffold of 7.19 Mb.

9.
J Biol Chem ; 290(27): 16678-97, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-25971969

ABSTRACT

Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.


Subject(s)
Bacterial Proteins/genetics , Klebsiella Infections/immunology , Klebsiella pneumoniae/genetics , NF-kappa B/immunology , Animals , Bacterial Proteins/immunology , Female , Genomics , Humans , Immune Evasion , Klebsiella Infections/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/immunology , Lipopolysaccharides/immunology , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Signal Transduction
10.
J Antimicrob Chemother ; 70(1): 81-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25193085

ABSTRACT

OBJECTIVES: In Klebsiella pneumoniae, overexpression of the AcrAB efflux pump and the more recently described OqxAB efflux pump has been linked to an antibiotic cross-resistance phenotype, but the mechanisms of regulation are largely unknown. Moreover, while AcrAB has been shown to participate in K. pneumoniae virulence, the contribution of OqxAB has not yet been assessed. METHODS: In the present study we investigated a K. pneumoniae clinical isolate (KPBj1 E+), displaying cross-resistance to quinolones, chloramphenicol and cefoxitin, and its phenotypic revertant (KPBj1 Rev, susceptible to antibiotics) by using whole-genome sequencing, RT-PCR, complementation and a Caenorhabditis elegans virulence model. RESULTS: We detected a point mutation in the oqxR repressor gene of KPBj1 E+, which overexpressed genes rarA, encoding a transcriptional regulator, and oqxB, but not acrB. Complementation with wild-type oqxR restored antibiotic susceptibility and normalized rarA and oqxB expression levels. Whole-genome sequencing showed that KPBj1 Rev had lost the entire rarA-oqxABR locus, situated close to an integration hot spot of phage P4. This large deletion seemed responsible for the significantly lower virulence potential of strain KPBj1 Rev compared with KPBj1 E+. Moreover, we found that KPBj1 E+ ΔacrB was significantly less virulent than its parental strain. CONCLUSIONS: This work demonstrates the role of the overexpression of efflux pump OqxAB, due to a mutation in gene oqxR, in the antibiotic resistance phenotype of a clinical isolate, and suggests that the presence of AcrAB, associated with overexpression of OqxAB, is required for high virulence potential.


Subject(s)
Anti-Bacterial Agents/metabolism , Biological Transport, Active , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/microbiology , Klebsiella pneumoniae/metabolism , Membrane Transport Proteins/metabolism , Virulence Factors/metabolism , Animals , Caenorhabditis elegans , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Humans , Klebsiella Infections/pathology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Membrane Transport Proteins/genetics , Point Mutation , Virulence , Virulence Factors/genetics
11.
J Vis Exp ; (87)2014 May 23.
Article in English | MEDLINE | ID: mdl-24894759

ABSTRACT

Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber. Here we expand upon the foundation and applicability of FUEL by reviewing the relevant principles behind the phenomenon and demonstrate its compatibility with a wide variety of fluorophores and fluorescent nanoparticles. Further, the utility of antibody-targeted FUEL is explored. The examples shown here provide evidence that FUEL can be utilized for applications where BRET is not possible, filling the spatial void that exists between BRET and traditional whole animal imaging.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Luminescent Measurements/methods , Escherichia coli/chemistry , Fluorescent Dyes/chemistry , Klebsiella pneumoniae/chemistry , Luciferases, Bacterial/chemistry , Nanoparticles/chemistry , Photobacterium/chemistry , Photobacterium/enzymology , Quantum Dots
12.
BMC Biol ; 12: 41, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24885329

ABSTRACT

BACKGROUND: Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. RESULTS: In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. CONCLUSIONS: Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae.


Subject(s)
Genome, Bacterial/genetics , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Multigene Family , Phospholipase D/genetics , Virulence Factors/genetics , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Genes, Bacterial/genetics , Genomic Islands/genetics , Klebsiella pneumoniae/isolation & purification , Lipid Metabolism/genetics , Mice , Molecular Sequence Annotation , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Phospholipase D/chemistry , Plasmids/genetics , Sequence Alignment , Virulence/genetics
13.
Biotechnol J ; 9(5): 595-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24737539

ABSTRACT

Modern fluorescence imaging microscopy in living and fixed material makes use of fluorescent probes to label targeted entities. Common labelling approaches include classical immunocytochemistry, expression of chimerically tagged fluorescent protein domains, and chemical affinity-binding or covalent labelling. Of these methods, the so-called "Click Chemistry", is emerging as one of the most influential labelling chemistries introduced in recent times, offering enormous utility for bio-orthoganol attachment of fluorescent probes to biological target entities. In this issue of Biotechnology Journal, Löschberger, Niehörster and Sauer report "ClickOx", a Click Chemistry protocol that uses an enzymatic oxygen scavenger system to reduce concurrent ROS-associated damage during Click labeling.


Subject(s)
Cellular Structures/ultrastructure , Click Chemistry/methods , Green Fluorescent Proteins/chemistry , Molecular Imaging/methods , Animals , Humans
14.
Methods Mol Biol ; 1098: 259-70, 2014.
Article in English | MEDLINE | ID: mdl-24166383

ABSTRACT

Bioluminescence imaging is a powerful technique that allows for deep-tissue analysis in living, intact organisms. However, in vivo optical imaging is compounded by difficulties due to light scattering and absorption. While light scattering is relatively difficult to overcome and compensate, light absorption by biological tissue is strongly dependent upon wavelength. For example, light absorption by mammalian tissue is highest in the blue-yellow part of the visible energy spectrum. Many natural bioluminescent molecules emit photonic energy in this range, thus in vivo optical detection of these molecules is primarily limited by absorption. This has driven efforts for probe development aimed to enhance photonic emission of red light that is absorbed much less by mammalian tissue using either direct genetic manipulation, and/or resonance energy transfer methods. Here we describe a recently identified alternative approach termed Fluorescence by Unbound Excitation from Luminescence (FUEL), where bioluminescent molecules are able to induce a fluorescent response from fluorescent nanoparticles through an epifluorescence mechanism, thereby significantly increasing both the total number of detectable photons as well as the number of red photons produced.


Subject(s)
Fluorescence , Luminescent Measurements/methods , Optical Imaging/methods , Animals , Escherichia coli/metabolism , Female , Mice , Mice, Inbred BALB C , Nanoparticles/analysis , Nanoparticles/chemistry , Photons
15.
Methods ; 66(2): 353-61, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24045025

ABSTRACT

Energy transfer mechanisms represent the basis for an array of valuable tools to infer interactions in vitro and in vivo, enhance detection or resolve interspecies distances such as with resonance. Based upon our own previously published studies and new results shown here we present a novel framework describing for the first time a model giving a view of the biophysical relationship between Fluorescence by Unbound Excitation from Luminescence (FUEL), a conventional radiative excitation-emission process, and bioluminescence resonance energy transfer. We show here that in homogeneous solutions and in fluorophore-targeted bacteria, FUEL is the dominant mechanism responsible for the production of red-shifted photons. The minor resonance contribution was ascertained by comparing the intensity of the experimental signal to its theoretical resonance counterpart. Distinctive features of the in vitro FUEL signal include a macroscopic depth dependency, a lack of enhancement upon targeting at a constant fluorophore concentration cf and a non-square dependency on cf. Significantly, FUEL is an important, so far overlooked, component of all resonance phenomena which should guide the design of appropriate controls when elucidating interactions. Last, our results highlight the potential for FUEL as a means to enhance in vivo and in vitro detection through complex media while alleviating the need for targeting.


Subject(s)
Energy Transfer , Algorithms , Escherichia coli , Fluorescent Dyes/chemistry , Klebsiella pneumoniae , Luciferases, Renilla/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence
16.
EMBO Mol Med ; 5(4): 516-30, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23554169

ABSTRACT

Rhinoscleroma is a human specific chronic disease characterized by the formation of granuloma in the airways, caused by the bacterium Klebsiella pneumoniae subspecies rhinoscleromatis, a species very closely related to K. pneumoniae subspecies pneumoniae. It is characterized by the appearance of specific foamy macrophages called Mikulicz cells. However, very little is known about the pathophysiological processes underlying rhinoscleroma. Herein, we characterized a murine model recapitulating the formation of Mikulicz cells in lungs and identified them as atypical inflammatory monocytes specifically recruited from the bone marrow upon K. rhinoscleromatis infection in a CCR2-independent manner. While K. pneumoniae and K. rhinoscleromatis infections induced a classical inflammatory reaction, K. rhinoscleromatis infection was characterized by a strong production of IL-10 concomitant to the appearance of Mikulicz cells. Strikingly, in the absence of IL-10, very few Mikulicz cells were observed, confirming a crucial role of IL-10 in the establishment of a proper environment leading to the maturation of these atypical monocytes. This is the first characterization of the environment leading to Mikulicz cells maturation and their identification as inflammatory monocytes.


Subject(s)
Foam Cells/immunology , Interleukin-10/immunology , Klebsiella pneumoniae/immunology , Monocytes/microbiology , Rhinoscleroma/immunology , Rhinoscleroma/microbiology , Animals , Disease Models, Animal , Humans , Klebsiella pneumoniae/physiology , Male , Mice , Mice, Inbred BALB C
17.
Proc Natl Acad Sci U S A ; 109(23): 8890-5, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615349

ABSTRACT

The lux operon derived from Photorhabdus luminescens incorporated into bacterial genomes, elicits the production of biological chemiluminescence typically centered on 490 nm. The light-producing bacteria are widely used for in vivo bioluminescence imaging. However, in living samples, a common difficulty is the presence of blue-green absorbers such as hemoglobin. Here we report a characterization of fluorescence by unbound excitation from luminescence, a phenomenon that exploits radiating luminescence to excite nearby fluorophores by epifluorescence. We show that photons from bioluminescent bacteria radiate over mesoscopic distances and induce a red-shifted fluorescent emission from appropriate fluorophores in a manner distinct from bioluminescence resonance energy transfer. Our results characterizing fluorescence by unbound excitation from luminescence, both in vitro and in vivo, demonstrate how the resulting blue-to-red wavelength shift is both necessary and sufficient to yield contrast enhancement revealing mesoscopic proximity of luminescent and fluorescent probes in the context of living biological tissues.


Subject(s)
Fluorescence , Luminescence , Luminescent Agents/metabolism , Molecular Imaging/methods , Nanoparticles/chemistry , Animals , Escherichia coli , Female , Luminescent Measurements , Mice , Mice, Inbred BALB C , Quantum Dots , Staphylococcus aureus
18.
Trop Anim Health Prod ; 44(6): 1289-96, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22258310

ABSTRACT

Using a mechanistic model, we compared five alternative farming systems with the purpose of transforming monoculture (MON) banana farms into mixed farming systems (MFS) with ruminants feeding banana by-products (leaves, pseudostems and nonmarketable fruits) and forage from the fallow land. The paper presents the main structure of the model (land surface changes, available biomass for animals, stocking rates, productive or reproductive indicators), and impact assessment (change in farm productivity) is discussed. Five MFS with typical local ruminant production systems were used to compare MON to the strategies using forage from fallow and/or integrating Creole cattle (CC), Creole goats (CG) or Martinik sheep (MS) into banana farming. One hectare MON shifted into an MFS allows a stocking rate of 1,184, 285, and 418 kg of live weight per hectare for CC, CG and MS, respectively. Banana by-products seem to be better valorized by the CC scenario. However, parameters such as length of the cycle, local prices for cattle, goat and sheep meat, work time and farmer's skills in ruminant management may have been taken into account by the farmer when choosing the ruminant species to rear.


Subject(s)
Agriculture/economics , Agriculture/methods , Animal Feed , Livestock/growth & development , Models, Economic , Musa/growth & development , Animals , Cattle , Goats , Guadeloupe , Martinique , Sheep
19.
PLoS Negl Trop Dis ; 5(5): e1052, 2011 May.
Article in English | MEDLINE | ID: mdl-21629720

ABSTRACT

Rhinoscleroma is a chronic granulomatous infection of the upper airways caused by the bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. The disease is endemic in tropical and subtropical areas, but its diagnosis remains difficult. As a consequence, and despite available antibiotherapy, some patients evolve advanced stages that can lead to disfiguration, severe respiratory impairment and death by anoxia. Because identification of the etiologic agent is crucial for the definitive diagnosis of the disease, the aim of this study was to develop two simple PCR assays. We took advantage of the fact that all Klebsiella pneumoniae subsp. rhinoscleromatis isolates are (i) of capsular serotype K3; and (ii) belong to a single clone with diagnostic single nucleotide polymorphisms (SNP). The complete sequence of the genomic region comprising the capsular polysaccharide synthesis (cps) gene cluster was determined. Putative functions of the 21 genes identified were consistent with the structure of the K3 antigen. The K3-specific sequence of gene Kr11509 (wzy) was exploited to set up a PCR test, which was positive for 40 K3 strains but negative when assayed on the 76 other Klebsiella capsular types. Further, to discriminate Klebsiella pneumoniae subsp. rhinoscleromatis from other K3 Klebsiella strains, a specific PCR assay was developed based on diagnostic SNPs in the phosphate porin gene phoE. This work provides rapid and simple molecular tools to confirm the diagnostic of rhinoscleroma, which should improve patient care as well as knowledge on the prevalence and epidemiology of rhinoscleroma.


Subject(s)
Bacteriological Techniques/methods , Klebsiella pneumoniae/isolation & purification , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Rhinoscleroma/diagnosis , Bacterial Capsules/biosynthesis , Bacterial Capsules/genetics , Bacterial Proteins/genetics , Child , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Female , Humans , Klebsiella pneumoniae/genetics , Molecular Sequence Data , Multigene Family , Polymorphism, Single Nucleotide , Porins/genetics , Sensitivity and Specificity , Sequence Analysis, DNA
20.
PLoS One ; 4(3): e4982, 2009.
Article in English | MEDLINE | ID: mdl-19319196

ABSTRACT

Klebsiella pneumoniae is found in the environment and as a harmless commensal, but is also a frequent nosocomial pathogen (causing urinary, respiratory and blood infections) and the agent of specific human infections including Friedländer's pneumonia, rhinoscleroma and the emerging disease pyogenic liver abscess (PLA). The identification and precise definition of virulent clones, i.e. groups of strains with a single ancestor that are associated with particular infections, is critical to understand the evolution of pathogenicity from commensalism and for a better control of infections. We analyzed 235 K. pneumoniae isolates of diverse environmental and clinical origins by multilocus sequence typing, virulence gene content, biochemical and capsular profiling and virulence to mice. Phylogenetic analysis of housekeeping genes clearly defined clones that differ sharply by their clinical source and biological features. First, two clones comprising isolates of capsular type K1, clone CC23(K1) and clone CC82(K1), were strongly associated with PLA and respiratory infection, respectively. Second, only one of the two major disclosed K2 clones was highly virulent to mice. Third, strains associated with the human infections ozena and rhinoscleroma each corresponded to one monomorphic clone. Therefore, K. pneumoniae subsp. ozaenae and K. pneumoniae subsp. rhinoscleromatis should be regarded as virulent clones derived from K. pneumoniae. The lack of strict association of virulent capsular types with clones was explained by horizontal transfer of the cps operon, responsible for the synthesis of the capsular polysaccharide. Finally, the reduction of metabolic versatility observed in clones Rhinoscleromatis, Ozaenae and CC82(K1) indicates an evolutionary process of specialization to a pathogenic lifestyle. In contrast, clone CC23(K1) remains metabolically versatile, suggesting recent acquisition of invasive potential. In conclusion, our results reveal the existence of important virulent clones associated with specific infections and provide an evolutionary framework for research into the links between clones, virulence and other genomic features in K. pneumoniae.


Subject(s)
Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Animals , Biological Evolution , Clone Cells , Genome, Bacterial , Humans , Klebsiella Infections , Klebsiella pneumoniae/isolation & purification , Mice , Phenotype , Phylogeny , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...