Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Microorganisms ; 12(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399712

ABSTRACT

Anthrax toxins are critical virulence factors of Bacillus anthracis and Bacillus cereus strains that cause anthrax-like disease, composed of a common binding factor, the protective antigen (PA), and two enzymatic proteins, lethal factor (LF) and edema factor (EF). While PA is required for endocytosis and activity of EF and LF, several studies showed that these enzymatic factors disseminate within the body in the absence of PA after intranasal infection. In an effort to understand the impact of EF in the absence of PA, we used a fluorescent EF chimera to facilitate the study of endocytosis in different cell lines. Unexpectedly, EF was found inside cells in the absence of PA and showed a pole-dependent endocytosis. However, looking at enzymatic activity, PA was still required for EF to induce an increase in intracellular cAMP levels. Interestingly, the sequential delivery of EF and then PA rescued the rise in cAMP levels, indicating that PA and EF may functionally associate during intracellular trafficking, as well as it did at the cell surface. Our data shed new light on EF trafficking and the potential location of PA and EF association for optimal cytosolic delivery.

2.
Front Immunol ; 14: 1241323, 2023.
Article in English | MEDLINE | ID: mdl-37649477

ABSTRACT

Introduction: Inflammatory lesions after Influenza A viruses (IAV) are potential therapeutic target for which better understanding of post-infection immune mechanisms is required. Most studies to evaluate innate immune reactions induced by IAV are based on quantitative/functional methods and anatomical exploration is most often non-existent. We aimed to study pulmonary damage and macrophage recruitment using two-photon excitation microscopy (TPEM) after IAV infection. Methods: We infected C57BL/6 CD11c+YFP mice with A/Puerto Ricco/8/34 H1N1. We performed immune cell analysis, including flow cytometry, cytokine concentration assays, and TPEM observations after staining with anti-F4/80 antibody coupled to BV421. We adapted live lung slice (LLS) method for ex-vivo intravital microscopy to analyze cell motility. Results: TPEM provided complementary data to flow cytometry and cytokine assays by allowing observation of bronchial epithelium lesions and spreading of local infection. Addition of F4/80-BV421 staining allowed us to precisely determine timing of recruitment and pulmonary migration of macrophages. Ex-vivo LLS preserved cellular viability, allowing us to observe acceleration of macrophage motility. Conclusion: After IAV infection, we were able to explore structural consequences and successive waves of innate immune cell recruitment. By combining microscopy, flow cytometry and chemokine measurements, we describe novel and precise scenario of innate immune response against IAV.


Subject(s)
Alphainfluenzavirus , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Animals , Mice , Humans , Mice, Inbred C57BL , Disease Models, Animal , Immunity, Innate , Microscopy, Fluorescence , Cytokines
3.
Med Trop Sante Int ; 3(1)2023 03 31.
Article in French | MEDLINE | ID: mdl-37525645

ABSTRACT

The army has always been particularly exposed to the risk of infection, which Alphonse Laveran already analyzed in 1875 in his Traité des maladies et épidémies des armées. Nowadays, the risk of infection is still present, which is why the Armed Forces Health Service (SSA) employs modern research resources in this area structured around the Armed Forces Biomedical Research Institute (IRBA) supported by the Military Training Hospitals (HIA), the Armed Forces Epidemiology and Public Health Center (CESPA), and the Val-de-Grâce School.These resources meet current research needs in infectious and tropical diseases and are preparing to respond to future emergences.Recently, the SSA research has stood out in several epidemics and emergences that have affected the French Armed Forces and the national population.


Subject(s)
Communicable Diseases , Epidemics , Military Personnel , Humans , Public Health , Health Services , Communicable Diseases/epidemiology
5.
J Infect Dis ; 228(10): 1421-1429, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37224627

ABSTRACT

BACKGROUND: On May 6, 2022, a powerful outbreak of monkeypox virus (MPXV) had been reported outside of Africa, with many continuing new cases being reported around the world. Analysis of mutations among the 2 different lineages present in the 2021 and 2022 outbreaks revealed the presence of G->A mutations occurring in the 5'GpA context, indicative of APOBEC3 cytidine deaminase activity. METHODS: By using a sensitive polymerase chain reaction (differential DNA denaturation PCR) method allowing differential amplification of AT-rich DNA, we analyzed the level of APOBEC3-induced MPXV editing in infected cells and in patients. RESULTS: We demonstrate that G->A hypermutated MPXV genomes can be recovered experimentally from APOBEC3 transfection followed by MPXV infection. Here, among the 7 human APOBEC3 cytidine deaminases (A3A-A3C, A3DE, A3F-A3H), only APOBEC3F was capable of extensively deaminating cytidine residues in MPXV genomes. Hyperedited genomes were also recovered in ∼42% of analyzed patients. Moreover, we demonstrate that substantial repair of these mutations occurs. Upon selection, corrected G->A mutations escaping drift loss contribute to the MPXV evolution observed in the current epidemic. CONCLUSIONS: Stochastic or transient overexpression of the APOBEC3F gene exposes the MPXV genome to a broad spectrum of mutations that may be modeling the mutational landscape after multiple cycles of viral replication.


Subject(s)
Cytidine Deaminase , Monkeypox virus , Humans , Monkeypox virus/genetics , Cytidine Deaminase/genetics , Mutation , Disease Outbreaks , Cytidine , Cytosine Deaminase/chemistry , Cytosine Deaminase/genetics
6.
Res Microbiol ; 174(6): 104054, 2023.
Article in English | MEDLINE | ID: mdl-37003307

ABSTRACT

Bacillus anthracis is a spore-forming bacterium that produces two major virulence factors, a tripartite toxin with two enzymatic toxic activities and a pseudo-proteic capsule. One of the main described functions of the poly-gamma-d-glutamate capsule is to enable B. anthracis bacilli to escape phagocytosis. Thus, kinetics of expression of the capsule filaments at the surface of the emerging bacillus during germination is an important step for the protection of the nascent bacilli. In this study, through immunofluorescence and electron microscopic approaches, we show the emergence of the capsule through a significant surface of the exosporium in the vast majority of the germinating spores, with co-detection of BclA and capsular material. This suggests that, due to an early capsule expression, the extracellular life of B. anthracis might occur earlier than previously thought, once germination is triggered. This raises the prospect that an anti-capsular vaccine may play a protective role at the initial stage of infection by opsonisation of the nascent encapsulated bacilli before their emergence from the exosporium.


Subject(s)
Bacillus anthracis , Bacillus anthracis/metabolism , Spores, Bacterial/metabolism
7.
Front Immunol ; 14: 1140714, 2023.
Article in English | MEDLINE | ID: mdl-36969158

ABSTRACT

Introduction: Current approved COVID-19 vaccines, notably mRNA and adenoviral vectored technologies, still fail to fully protect against infection and transmission of various SARS-CoV-2 variants. The mucosal immunity at the upper respiratory tract represents the first line of defense against respiratory viruses such as SARS-CoV-2 and is thus critical to develop vaccine blocking human-to-human transmission. Methods: We measured systemic and mucosal Immunoglobulin A (IgA) response in serum and saliva from 133 healthcare workers from Percy teaching military hospital following a mild infection (SARS-CoV-2 Wuhan strain, n=58) or not infected (n=75), and after SARS-CoV-2 vaccination (Vaxzevria®/Astrazeneca and/or Comirnaty®/Pfizer). Results: While serum anti-SARS-CoV-2 Spike IgA response lasted up to 16 months post-infection, IgA response in saliva had mostly fallen to baseline level at 6 months post-infection. Vaccination could reactivate the mucosal response generated by prior infection, but failed to induce a significant mucosal IgA response by itself. Early post-COVID-19 serum anti-Spike-NTD IgA titer correlated with seroneutralization titers. Interestingly, its saliva counterpart positively correlated with persistent smell and taste disorders more than one year after mild COVID-19. Discussion: As breakthrough infections have been correlated with IgA levels, other vaccine platforms inducing a better mucosal immunity are needed to control COVID-19 infection in the future. Our results encourage further studies to explore the prognosis potential of anti-Spike-NTD IgA in saliva at predicting persistent smell and taste disorders.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Smell , Immunoglobulin A , COVID-19 Vaccines , Hospitals, Teaching
8.
Res Microbiol ; 174(6): 104053, 2023.
Article in English | MEDLINE | ID: mdl-36925026

ABSTRACT

Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by Clostridium and Bacillus species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on B. anthracis Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent B. anthracis spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.


Subject(s)
Bacillus anthracis , Disinfectants , Disinfectants/pharmacology , Decontamination , Spores, Bacterial
10.
Travel Med Infect Dis ; 52: 102559, 2023.
Article in English | MEDLINE | ID: mdl-36809829

ABSTRACT

The human monkeypox disease has mainly been described in Western and Central Africa. Since May 2022, the monkeypox virus has been spreading worldwide in a new epidemiological pattern, where cases result from person-to-person transmission, and develop clinically milder or less typical illness than during previous outbreaks in endemic areas. The newly-emerging monkeypox disease needs to be described over the long term, to improve cases definitions, to implement prompt control measures against epidemics, and to provide supportive care. Hence, we first conducted a review of historical and recent outbreaks to define the full clinical spectrum of the monkeypox disease and its course known so far. Then, we built a self-administrated questionnaire collecting daily symptoms of the monkeypox infection to follow cases and their contacts, even remotely. This tool will assist in the management of cases, the surveillance of contacts, and the conduct of clinical studies.


Subject(s)
Epidemics , Mpox (monkeypox) , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus , Africa, Central , Disease Outbreaks/prevention & control
11.
Nat Microbiol ; 7(12): 1951-1955, 2022 12.
Article in English | MEDLINE | ID: mdl-36344621

ABSTRACT

The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. We isolated and sequenced a virus from the first clinical MPXV case diagnosed in France (May 2022). We report that tecovirimat (ST-246), a US Food and Drug Administration approved drug, is efficacious against this isolate in vitro at nanomolar concentrations, whereas cidofovir is only effective at micromolar concentrations. Our results support the use of tecovirimat in ongoing human clinical trials.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , United States , Humans , Mpox (monkeypox)/drug therapy , Isoindoles/pharmacology , Isoindoles/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use
12.
Pathogens ; 11(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297243

ABSTRACT

Bacillus anthracis, present as a very durable endospore in soil, causes zoonotic illness which is mainly associated with herbivores and domestic animals. Human cases are scarce and often involve populations close to infected livestock. If anthrax is no longer of public health concern in developed countries, B. anthracis is one of the top-tier biological weapon agents. It is classified by the CDC as a category A agent. Since 1994, emerging strains of Bacillus cereus have been associated with anthrax-like disease in mammals. Some clinical strains of B. cereus harbor anthrax-like plasmid genes (pXO1 and pXO2) associated with non-human primate and human infections, with the same clinical presentation of inhalation anthrax and mortality rates. Although currently restricted to certain limited areas of circulation, the emergence of these new strains of B. cereus extends the list of potential agents possibly usable for bioterrorism or as a biological weapon. It is therefore important to improve our knowledge of the phylogeny within the B. cereus sensu lato group to better understand the origin of these strains. We can then more efficiently monitor the emergence of new strains to better control the risk of infection and limit potentially malicious uses.

13.
Vaccines (Basel) ; 10(9)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36146633

ABSTRACT

The recent surge of COVID-19 related to the Omicron variant emergence has thrown a harsh light upon epidemic control in the near future. This should lead the scientific and medical community to question the long-term vaccine strategy for SARS-CoV-2 control. We provide here a critical point of view regarding the virological evolution, epidemiological aspects, and immunological drivers for COVID-19 control, including a vaccination strategy. Overall, we need more innovations in vaccine development to reduce the COVID-19 burden long term. The most adequate answer might be better cooperation between universities, biotech and pharmaceutical companies.

15.
Euro Surveill ; 27(21)2022 05.
Article in English | MEDLINE | ID: mdl-35620999

ABSTRACT

BackgroundSARS-CoV-2 emergence was a threat for armed forces. A COVID-19 outbreak occurred on the French aircraft carrier Charles de Gaulle from mid-March to mid-April 2020.AimTo understand how the virus was introduced, circulated then stopped circulation, risk factors for infection and severity, and effectiveness of preventive measures.MethodsWe considered the entire crew as a cohort and collected personal, clinical, biological, and epidemiological data. We performed viral genome sequencing and searched for SARS-CoV-2 in the environment.ResultsThe attack rate was 65% (1,148/1,767); 1,568 (89%) were included. The male:female ratio was 6.9, and median age was 29 years (IQR: 24-36). We examined four clinical profiles: asymptomatic (13.0%), non-specific symptomatic (8.1%), specific symptomatic (76.3%), and severe (i.e. requiring oxygen therapy, 2.6%). Active smoking was not associated with severe COVID-19; age and obesity were risk factors. The instantaneous reproduction rate (Rt) and viral sequencing suggested several introductions of the virus with 4 of 5 introduced strains from within France, with an acceleration of Rt when lifting preventive measures. Physical distancing prevented infection (adjusted OR: 0.55; 95% CI: 0.40-0.76). Transmission may have stopped when the proportion of infected personnel was large enough to prevent circulation (65%; 95% CI: 62-68).ConclusionNon-specific clinical pictures of COVID-19 delayed detection of the outbreak. The lack of an isolation ward made it difficult to manage transmission; the outbreak spread until a protective threshold was reached. Physical distancing was effective when applied. Early surveillance with adapted prevention measures should prevent such an outbreak.


Subject(s)
COVID-19 , Adult , Aircraft , COVID-19/epidemiology , Disease Outbreaks , Female , Humans , Male , Retrospective Studies , SARS-CoV-2/genetics
16.
Toxins (Basel) ; 14(3)2022 02 25.
Article in English | MEDLINE | ID: mdl-35324669

ABSTRACT

Anthrax is an acute disease caused by the bacterium Bacillus anthracis, and is a potential biowarfare/bioterrorist agent. Its pulmonary form, caused by inhalation of the spores, is highly lethal and is mainly related to injury caused by the toxins secretion. Antibodies neutralizing the toxins of B. anthracis are regarded as promising therapeutic drugs, and two are already approved by the Federal Drug Administration. We developed a recombinant human-like humanized antibody, 35PA83 6.20, that binds the protective antigen and that neutralized anthrax toxins in-vivo in White New Zealand rabbits infected with the lethal 9602 strain by intranasal route. Considering these promising results, the preclinical and clinical phase one development was funded and a program was started. Unfortunately, after 5 years, the preclinical development was cancelled due to industrial and scientific issues. This shutdown underlined the difficulty particularly, but not only, for an academic laboratory to proceed to clinical development, despite the drug candidate being promising. Here, we review our strategy and some preliminary results, and we discuss the issues that led to the no-go decision of the pre-clinical development of 35PA83 6.20 mAb. Our review provides general information to the laboratories planning a (pre-)clinical development.


Subject(s)
Anthrax Vaccines , Anthrax , Antitoxins , Bacillus anthracis , Administration, Inhalation , Animals , Anthrax/drug therapy , Anthrax/microbiology , Antibodies, Bacterial , Antigens, Bacterial , Rabbits , Recombinant Proteins , Spores, Bacterial
17.
Rev Francoph Lab ; 2022(540): 40-52, 2022 Mar.
Article in French | MEDLINE | ID: mdl-35284007

ABSTRACT

The development of new vaccines has traditionally been a long-term job, although recent experience with the emergence of Covid-19 has caused development and production delays to skyrocket. The fact remains that the development of vaccines in the preclinical phases and in phases 1 and 2 of clinical development is based on the study of the specific immune response of the adaptive immune system.

18.
Med Sci (Paris) ; 38(12): 1052-1060, 2022 Dec.
Article in French | MEDLINE | ID: mdl-36692265

ABSTRACT

Viruses have been used as tools to prevent viral infections themselves for more than two centuries with impressive success. After the empirical discoveries of the first vaccines, today the development of genetic engineering, molecular virology, reverse genetics, the manipulation of viral genomes, their high-throughput sequencing and their chemical synthesis, the mastery of cell culture and purification methods have greatly benefited the development of viral vaccines. Since smallpox and rabies, the history of vaccinology has followed in the footsteps of the history of virology. New mRNA or viral vector vaccines have emerged in recent years. They were developed and distributed to the population in record time in the face of the Covid pandemic. Viruses in the service of health have a bright future ahead of them, whether to prevent other pandemics, to treat cancer, or to finally control HIV and malaria.


Title: Les virus au service de la santé : la vaccination. Abstract: Depuis plus de deux siècles, les virus sont utilisés, avec un succès impressionnant, comme outils de prévention des infections virales. Depuis la variole et la rage, l'histoire de la vaccinologie a suivi les pas de l'histoire de la virologie. Après les découvertes empiriques des premiers vaccins, le développement du génie génétique, de la virologie moléculaire, de la génétique inverse, la manipulation des génomes viraux, leur séquençage à haut débit et leur synthèse chimique, la maîtrise de la culture cellulaire et des méthodes de purification, ont considérablement contribué au développement de nouveaux vaccins viraux. Des vaccins à ARN messager ou à vecteur viral ont ainsi vu le jour ces dernières années et, face à la pandémie de Covid-19, ont été développés et distribués à la population en un temps record. Les virus au service de la santé ont un bel avenir devant eux, que cela soit pour prévenir d'autres pandémies, pour traiter le cancer, ou contrôler, enfin, le VIH ou le Plasmodium, l'agent du paludisme.


Subject(s)
COVID-19 , Viral Vaccines , Virus Diseases , Viruses , Humans , COVID-19/prevention & control , Vaccination/history , Virus Diseases/prevention & control
19.
Nat Commun ; 12(1): 6277, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725327

ABSTRACT

Several COVID-19 vaccines have now been deployed to tackle the SARS-CoV-2 pandemic, most of them based on messenger RNA or adenovirus vectors.The duration of protection afforded by these vaccines is unknown, as well as their capacity to protect from emerging new variants. To provide sufficient coverage for the world population, additional strategies need to be tested. The live pediatric measles vaccine (MV) is an attractive approach, given its extensive safety and efficacy history, along with its established large-scale manufacturing capacity. We develop an MV-based SARS-CoV-2 vaccine expressing the prefusion-stabilized, membrane-anchored full-length S antigen, which proves to be efficient at eliciting strong Th1-dominant T-cell responses and high neutralizing antibody titers. In both mouse and golden Syrian hamster models, these responses protect the animals from intranasal infectious challenge. Additionally, the elicited antibodies efficiently neutralize in vitro the three currently circulating variants of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Genetic Vectors , Immunity , Adenoviridae , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cricetinae , Cytokines , Female , Immunization , Immunization, Secondary , Male , Measles Vaccine/immunology , Mesocricetus , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...