Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(44): e202308339, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37599264

ABSTRACT

Polymeric foams are widely used in many industrial applications due to their light weight and superior thermal, mechanical, and optical properties. Currently, increasing research efforts is being directed towards the development of greener foam formulations that circumvent the use of isocyanates/blowing agents that are commonly used in the production of foam materials. Here, a straightforward, one-pot method is presented to prepare self-blown polycarbonate (PC) foams by exploiting the (decarboxylative) S-alkylation reaction for in situ generation of the blowing agent (CO2 ). The concomitant formation of a reactive alcohol intermediate promotes a cascade ring-opening polymerization of the cyclic carbonates to yield a cross-linked polymer network. It is shown that these hydroxyl-functionalized polycarbonate-based foams can be easily recycled into films through thermal compression molding. Furthermore, it is demonstrated that complete hydrolytic degradation of the foams is possible, thus offering the potential for zero-waste materials. This straightforward and versatile process broadens the scope of isocyanate-free, self-foaming materials, opening a new pathway for next-generation environmentally friendly foams.

2.
ACS Macro Lett ; 12(3): 338-343, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36802496

ABSTRACT

The preparation and reprocessing of an epoxy vitrimer material is performed in a fully biocatalyzed process wherein network formation and exchange reactions are promoted by a lipase enzyme. Binary phase diagrams are introduced to select suitable diacid/diepoxide monomer compositions overcoming the limitations (phase separation/sedimentation) imposed by curing temperature inferior than 100 °C, to protect the enzyme. The ability of lipase TL, embedded in the chemical network, to catalyze efficiently exchange reactions (transesterification) is demonstrated by combining multiple stress relaxation experiments at 70-100 °C and complete recovery of mechanical strength after several reprocessing assays (up to 3 times). Complete stress relaxation ability disappears after heating at 150 °C, due to enzyme denaturation. Transesterification vitrimers thus designed are complementary to those involving classical catalysis (e.g., using the organocatalyst triazabicyclodecene) for which complete stress relaxation is possible only at high temperature.

3.
Biomacromolecules ; 22(11): 4544-4551, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34618426

ABSTRACT

Commercially available lipase from Pseudomonas stutzeri (lipase TL) is investigated as a biocatalyst for the formation of an acid-epoxy chemical network. Molecular model reactions are performed by reacting 2-phenyl glycidyl ether and hexanoic acid in bulk, varying two parameters: temperature and water content. Characterizations of the formed products by 1H NMR spectroscopy and gas chromatography-mass spectrometry combined with enzymatic assays confirm that lipase TL is able to simultaneously promote acid-epoxy addition and transesterification reactions below 100 °C and solely the acid-epoxy addition after denaturation at T > 100 °C. A prototype bio-based chemical network with ß-hydroxyester links was obtained using resorcinol diglycidyl ether and sebacic acid as monomers with lipase TL as catalyst. Differential scanning calorimetry, attenuated total reflection, and swelling analysis confirm gelation of the network.


Subject(s)
Epoxy Resins , Lipase , Catalysis , Esterification , Lipase/metabolism , Temperature
4.
Soft Matter ; 17(31): 7384-7395, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34312632

ABSTRACT

Selection of monomer couples, ensuring reactivity ratios close to zero, is an effective strategy to induce spontaneous copolymerization into an alternating sequence. In addition, monomer design and customisation of the solvent-monomer interactions open the way to functional copolymers showing molecular self-assembly relevant to their regular amphipathic structure. In this work, we show that the design of comonomers with adequate reactivities and interactions can be used to direct copolymer self-assembly on a mesoscopic scale. We investigate spontaneous formation of nanoparticles through solvent/non-solvent interactions using the so-called "ouzo effect". In this way, an ouzo diagram was built to determine the operation window for the self-assembly, in aqueous suspensions, of alternating copolymers consisting of vinyl phenol and maleimide units carrying long alkyl-pendant groups (C12H25 or C18H37). Also, investigations were pursued to account for the influence of the lateral lipophilic pendant units on the size and structure of the nanoaggregates formed during one-shot water addition. Structure characterisation by light scattering techniques (DLS and SLS), small-angle neutron scattering (SANS) and transmission electron microscopy (cryo-TEM and TEM) confirmed the self-assembly of copolymer chains into nanoparticles (size range: 60-300 nm), the size of which is affected by the lipophilicity of the alternating copolymers, solvent-water affinity and the solvent diffusion in water. Altogether, we present here the spontaneous ouzo effect as a simple method to produce stable alternating copolymer nanoparticles in water without the addition of stabilizing agents.

5.
Angew Chem Int Ed Engl ; 59(13): 5193-5201, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-31943523

ABSTRACT

Herein, we report a method to synthesize a series of alternating copolymers that consist exclusively of acrylamide units. Crucial to realizing this polymer synthesis is the design of a divinyl monomer that contains acrylate and acrylamide moieties connected by two activated ester bonds. This design, which is based on the reactivity ratio of the embedded vinyl groups, allows a "selective" cyclopolymerization, wherein the intramolecular and intermolecular propagation are repeated alternately under dilute conditions. The addition of an amine to the resulting cyclopolymers afforded two different acryl amide units, i.e., an amine-substituted acryl amide and a 2-hydroxy-ethyl-substituted acryl amide in alternating sequence. Using this method, we could furnish ten types of alternating copolymers; some of these exhibit unique properties in solution and in the bulk, which are different from those of the corresponding random copolymers, and we attributed the differences to the alternating sequence.

6.
Soft Matter ; 12(21): 4838-45, 2016 May 25.
Article in English | MEDLINE | ID: mdl-27140663

ABSTRACT

Vitrimers appear as a new class of polymers that exhibit mechanical strength and are insoluble even at high temperatures, like thermosets, and yet, like thermoplastics, they are heat processable, recyclable and weldable. The question arises whether this welding property is maintained in composite materials made of more than 50 vol% of reinforcing fibers. In this paper, we quantitatively analyze the bond strength of epoxy vitrimer-based composite plates made by resin transfer molding and compare them to their non-vitrimer counterparts made of a standard thermoset epoxy. It is demonstrated that only epoxy vitrimer samples show substantial bond strength and the ability to be repeatedly welded thanks to the exchange reactions, which promote improved surface conformity and chemical bonding between the adherands at the joint interface. This opens the way towards joining composite parts without adhesives nor mechanical fasteners.

7.
J Am Chem Soc ; 136(32): 11268-71, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25072654

ABSTRACT

Design of materials with polymer-like properties at service temperature but able to flow like simple liquids when heated remains one of the important challenges of supramolecular chemistry. Combining these antagonistic properties is highly desirable to provide durability, processability, and recyclability of materials. Here, we explore a new strategy based on polycondensation reactions to design supramolecular polymer materials with stress at break above 10 MPa and melt viscosity lower than 1 Pa·s. We report the synthesis and rheological and mechanical properties (uniaxial tensile tests) of supramolecular polymers based on a multiblock polyamide architecture. The flexibility of polycondensation reactions made it possible to control the molecular size distribution, the strength of hydrogen bonds, and the crystallization of middle and end groups and to achieve targeted properties.

8.
J Am Chem Soc ; 134(20): 8424-7, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22568481

ABSTRACT

Covalently cross-linked polymers have many technological applications for their excellent properties, but they suffer from the lack of processability and adaptive properties. We report a simple, efficient method of generating adaptive cross-linked polymers via olefin metathesis. By introducing a very low level of the Grubbs' second-generation Ru metathesis catalyst, a chemically cross-linked polybutadiene network becomes malleable at room temperature while retaining its insolubility. The stress relaxation capability increases with increasing level of catalyst loading. In sharp contrast, catalyst-free control samples with identical network topology and cross-linking density do not show any adaptive properties. This chemistry should offer a possibility to combine the dimensional stability and solvent resistance of cross-linked polymers and the processability/adaptibility of thermoplastics.

9.
J Am Chem Soc ; 134(18): 7664-7, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22537278

ABSTRACT

Catalytic control of bond exchange reactions enables healing of cross-linked polymer materials under a wide range of conditions. The healing capability at high temperatures is demonstrated for epoxy-acid and epoxy-anhydride thermoset networks in the presence of transesterification catalysts. At lower temperatures, the exchange reactions are very sluggish, and the materials have properties of classical epoxy thermosets. Studies of model molecules confirmed that the healing kinetics is controlled by the transesterification reaction rate. The possibility of varying the catalyst concentration brings control and flexibility of welding and assembling of epoxy thermosets that do not exist for thermoplastics.

10.
ACS Macro Lett ; 1(7): 789-792, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-35607118

ABSTRACT

Vitrimers, strong organic glass formers, are covalent networks that are able to change their topology through thermoactivated bond exchange reactions. At high temperatures, vitrimers can flow and behave like viscoelastic liquids. At low temperatures, exchange reactions are very long and vitrimers behave like classical thermosets. The transition from the liquid to the solid is reversible and is, in fact, a glass transition. By changing the content and nature of the catalyst, we can tune the transesterification reaction rate and show that the vitrimer glass transition temperature and the broadness of the transition can be controlled at will in epoxy-based vitrimers. This opens new possibilities in practical applications of thermosets such as healing or convenient processability in a wide temperature range.

11.
Science ; 334(6058): 965-8, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22096195

ABSTRACT

Permanently cross-linked materials have outstanding mechanical properties and solvent resistance, but they cannot be processed and reshaped once synthesized. Non-cross-linked polymers and those with reversible cross-links are processable, but they are soluble. We designed epoxy networks that can rearrange their topology by exchange reactions without depolymerization and showed that they are insoluble and processable. Unlike organic compounds and polymers whose viscosity varies abruptly near the glass transition, these networks show Arrhenius-like gradual viscosity variations like those of vitreous silica. Like silica, the materials can be wrought and welded to make complex objects by local heating without the use of molds. The concept of a glass made by reversible topology freezing in epoxy networks can be readily scaled up for applications and generalized to other chemistries.

12.
J Am Chem Soc ; 131(23): 7966-7, 2009 Jun 17.
Article in English | MEDLINE | ID: mdl-19456158

ABSTRACT

We propose a strategy to obtain through a facile one-pot synthesis a large variety of supramolecular materials that can behave as differently as associating low-viscosity liquids, semicrystalline or amorphous thermoplastics, viscoelastic melts or rubbers. Such versatility is achieved thanks to simultaneous synthesis of branched backbones and grafting of associating units. This contrasts with usual synthetic pathways that rely on grafting functional groups on preprepared backbones. We use oligocondensation of fatty di- and triacids with diethylenetriamine and finely tune the molecular weight and degree of branching by end-capping some acid groups before condensation by reaction with aminoethylimidazolidone. Supramolecular assembly is formed thanks to complementary and self-complementary associations of amide, imidazolidone, and dialkylurea groups, and the stoichiometry directly controls the mesoscopic structure and properties.

13.
Nature ; 451(7181): 977-80, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18288191

ABSTRACT

Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.


Subject(s)
Rubber/chemistry , Crystallization , Elasticity , Fatty Acids/chemistry , Hydrogen Bonding , Mechanics , Rheology , Temperature , Urea/chemistry
14.
Nature ; 430(6999): 544-7, 2004 Jul 29.
Article in English | MEDLINE | ID: mdl-15282601

ABSTRACT

Phase separation in liquid mixtures is mainly controlled by temperature and pressure, but can also be influenced by gravitational, magnetic or electric fields. However, the weak coupling between such fields and concentration fluctuations limits this effect to extreme conditions. For example, mixing induced by uniform electric fields is detectable only at temperatures that are within a few hundredths of degree or less of the phase transition temperature of the system being studied. Here we predict and demonstrate that electric fields can control the phase separation behaviour of mixtures of simple liquids under more practical conditions, provided that the fields are non-uniform. By applying a voltage of 100 V across unevenly spaced electrodes about 50 micro m apart, we can reversibly induce the demixing of paraffin and silicone oil at 1 K above the phase transition temperature of the mixture; when the field gradients are turned off, the mixture becomes homogeneous again. This direct control over phase separation behaviour depends on field intensity, with the electrode geometry determining the length-scale of the effect. We expect that this phenomenon will find a number of nanotechnological applications, particularly as it benefits from field gradients near small conducting objects.

15.
Phys Rev Lett ; 90(14): 145504, 2003 Apr 11.
Article in English | MEDLINE | ID: mdl-12731928

ABSTRACT

We argue that the presence of dissociated ions in block copolymers under electric fields can induce strong morphological changes and even lead to phase transitions. We investigate, in particular, diblock copolymers in the body centered cubic (bcc) phase. In pure dielectric materials (no free charges), a dielectric breakdown is expected to occur for large enough electric fields, preempting any structural phase transition. On the other hand, dissociated ions are predicted to induce a phase transition to a hexagonal array of cylinders, at fields of about 10 V/microm or even lower. The strength of this mechanism can be tuned by controlling the amount of free ions present.

16.
Chemphyschem ; 3(12): 1024-30, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-12516213

ABSTRACT

N,N,N-butylethylpentylpropylammonium iodide 4 and related molecules have been selectively synthesised from commercially available aldehydes, amines and alkyl iodides using a reductive alkylation procedure. The crystalline texture of 4 obtained on cooling is optically isotropic between crossed polarisers, indicating a cubic structure. Differential scanning calorimetry (DSC, +10 K min-1) reveals a glass phase transition at -59 degrees C and a melting point at 192 degrees C. The melting entropy (23.9 J mol-1 K-1) indicates a first-order transition between a highly disordered mesophase and the isotropic liquid. Powder X-ray diffraction patterns were indexed in the cubic system (a = 14.08A; Pm3n space group). In this cell, the molecular packing with Z = 6 corresponds to a rather low compactness of 65%. Iodine and tetraalkylammonium ions occupy positions with a 4m2 site symmetry. These highly symmetrical states may be generated by stepwise rotation of the ammonium cation. The same structural model for orientationally disordered crystal (ODIC) phases can be applied to a series of tetraalkylammonium bromides and iodides.

SELECTION OF CITATIONS
SEARCH DETAIL
...