Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Legal Med ; 138(3): 1023-1037, 2024 May.
Article in English | MEDLINE | ID: mdl-38087052

ABSTRACT

Forensic medicine is a thriving application field for artificial intelligence (AI). Indeed, AI applications intended to forensic pathologists or forensic physicians have emerged since the last decade. For example, AI models were developed to help estimate the biological age of migrants or human remains. However, the uses of AI applications by forensic pathologists or physicians and their levels of integration in medicolegal practices are not well described yet. Therefore, a scoping review was conducted on PubMed, ScienceDirect, and Scopus databases. This review included articles that mention any AI application used by forensic pathologists or physicians in practice or any AI model applied in one expertise field of the forensic pathologist or physician. Articles in other languages than English or French or dealing mainly with complementary analyses handled by experts who are not forensic pathologists or physicians or with AI to analyze data for research purposes in forensic medicine were excluded from this review. All the relevant information was retrieved in each article from a grid analysis derived and adapted from the TRIPOD checklist. This review included 35 articles and revealed that AI applications are developed in thanatology and in clinical forensic medicine. However, those applications seem to mainly remain in research and development stages. Indeed, the use of AI applications by forensic pathologists or physicians is not actual due to issues discussed in this article. Finally, the integration of AI in daily medicolegal practice involves not only forensic pathologists or physicians but also legal professionals.


Subject(s)
Artificial Intelligence , Physicians , Humans , Pathologists , Databases, Factual , Forensic Medicine
3.
Int J Legal Med ; 138(2): 659-670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37804333

ABSTRACT

The diagnosis of drowning is one of the most difficult tasks in forensic medicine. The diatom test is a complementary analysis method that may help the forensic pathologist in the diagnosis of drowning and the localization of the drowning site. This test consists in detecting or identifying diatoms, unicellular algae, in tissue and water samples. In order to observe diatoms under light microscopy, those samples may be digested by enzymes such as proteinase K. However, this digestion method may leave high amounts of debris, leading thus to a difficult detection and identification of diatoms. To the best of our knowledge, no model is proved to detect and identify accurately diatom species observed in highly complex backgrounds under light microscopy. Therefore, a novel method of model development for diatom detection and identification in a forensic context, based on sequential transfer learning of object detection models, is proposed in this article. The best resulting models are able to detect and identify up to 50 species of forensically relevant diatoms with an average precision and an average recall ranging from 0.7 to 1 depending on the concerned species. The models were developed by sequential transfer learning and globally outperformed those developed by traditional transfer learning. The best model of diatom species identification is expected to be used in routine at the Medicolegal Institute of Paris.


Subject(s)
Diatoms , Drowning , Humans , Drowning/diagnosis , Lung , Forensic Medicine/methods , Microscopy
4.
Diagnostics (Basel) ; 13(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38066795

ABSTRACT

Diagnoses in forensic science cover many disciplinary and technical fields, including thanatology and clinical forensic medicine, as well as all the disciplines mobilized by these two major poles: criminalistics, ballistics, anthropology, entomology, genetics, etc. A diagnosis covers three major interrelated concepts: a categorization of pathologies (the diagnosis); a space of signs or symptoms; and the operation that makes it possible to match a set of signs to a category (the diagnostic approach). The generalization of digitization in all sectors of activity-including forensic science, the acculturation of our societies to data and digital devices, and the development of computing, storage, and data analysis capacities-constitutes a favorable context for the increasing adoption of artificial intelligence (AI). AI can intervene in the three terms of diagnosis: in the space of pathological categories, in the space of signs, and finally in the operation of matching between the two spaces. Its intervention can take several forms: it can improve the performance (accuracy, reliability, robustness, speed, etc.) of the diagnostic approach, better define or separate known diagnostic categories, or better associate known signs. But it can also bring new elements, beyond the mere improvement of performance: AI takes advantage of any data (data here extending the concept of symptoms and classic signs, coming either from the five senses of the human observer, amplified or not by technical means, or from complementary examination tools, such as imaging). Through its ability to associate varied and large-volume data sources, but also its ability to uncover unsuspected associations, AI may redefine diagnostic categories, use new signs, and implement new diagnostic approaches. We present in this article how AI is already mobilized in forensic science, according to an approach that focuses primarily on improving current techniques. We also look at the issues related to its generalization, the obstacles to its development and adoption, and the risks related to the use of AI in forensic diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...