Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5791, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758695

ABSTRACT

Earthquake-induced soil-liquefaction is a devastating phenomenon associated with loss of soil rigidity due to seismic shaking, resulting in catastrophic liquid-like soil deformation. Traditionally, liquefaction is viewed as an effectively undrained process. However, since undrained liquefaction only initiates under high energy density, most earthquake liquefaction events remain unexplained, since they initiate far from the earthquake epicenter, under low energy density. Here we show that liquefaction can occur under drained conditions at remarkably low seismic-energy density, offering a general explanation for earthquake far-field liquefaction. Drained conditions promote interstitial fluid flow across the soil during earthquakes, leading to excess pore pressure gradients and loss of soil strength. Drained liquefaction is triggered rapidly and controlled by a propagating compaction front, whose velocity depends on the seismic-energy injection rate. Our findings highlight the importance of considering soil liquefaction under a spectrum of drainage conditions, with critical implications for liquefaction potential assessments and hazards.

2.
J Microbiol Methods ; 200: 106556, 2022 09.
Article in English | MEDLINE | ID: mdl-35944821

ABSTRACT

Flow cytometry analysis (FCA) is increasingly used to obtain rapid results comparison to common colony-forming units plating method (CFU). Tools are needed for microbiological analysis for solid matrix such as food. Here, we report a fast and robust FCA using double staining with LDS751/DiBAC4(3) to analyze yeast viability in bread dough during baking.


Subject(s)
Bread , Saccharomyces cerevisiae , Bread/analysis , Bread/microbiology , Fermentation , Flow Cytometry
3.
Front Neurosci ; 15: 780623, 2021.
Article in English | MEDLINE | ID: mdl-34776861

ABSTRACT

Mechanical pain (or mechanical algesia) can both be a vital mechanism warning us for dangers or an undesired medical symptom important to mitigate. Thus, a comprehensive understanding of the different mechanisms responsible for this type of pain is paramount. In this work, we study the tearing of porcine skin in front of an infrared camera, and show that mechanical injuries in biological tissues can generate enough heat to stimulate the neural network. In particular, we report local temperature elevations of up to 24°C around fast cutaneous ruptures, which shall exceed the threshold of the neural nociceptors usually involved in thermal pain. Slower fractures exhibit lower temperature elevations, and we characterise such dependency to the damaging rate. Overall, we bring experimental evidence of a novel-thermal-pathway for direct mechanical algesia. In addition, the implications of this pathway are discussed for mechanical hyperalgesia, in which a role of the cutaneous thermal sensors has priorly been suspected. We also show that thermal dissipation shall actually account for a significant portion of the total skin's fracture energy, making temperature monitoring an efficient way to detect biological damages.

4.
Sci Rep ; 11(1): 20418, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34650113

ABSTRACT

We present a subcritical fracture growth model, coupled with the elastic redistribution of the acting mechanical stress along rugous rupture fronts. We show the ability of this model to quantitatively reproduce the intermittent dynamics of cracks propagating along weak disordered interfaces. To this end, we assume that the fracture energy of such interfaces (in the sense of a critical energy release rate) follows a spatially correlated normal distribution. We compare various statistical features from the obtained fracture dynamics to that from cracks propagating in sintered polymethylmethacrylate (PMMA) interfaces. In previous works, it has been demonstrated that such an approach could reproduce the mean advance of fractures and their local front velocity distribution. Here, we go further by showing that the proposed model also quantitatively accounts for the complex self-affine scaling morphology of crack fronts and their temporal evolution, for the spatial and temporal correlations of the local velocity fields and for the avalanches size distribution of the intermittent growth dynamics. We thus provide new evidence that an Arrhenius-like subcritical growth is particularly suitable for the description of creeping cracks.

5.
J Microbiol Methods ; 190: 106336, 2021 11.
Article in English | MEDLINE | ID: mdl-34560161

ABSTRACT

Use of flow cytometry (FCM) for bacteria quantification is growing in the food industry. We report here a FCM method using a double-staining LDS751/SYTO24 for the quantification of probiotic Bacillus viable cells and its spores, with potential application for the control of commercial product specifications.


Subject(s)
Bacillus/isolation & purification , Bacterial Load/methods , Flow Cytometry/methods , Spores, Bacterial/isolation & purification , Microbial Viability , Probiotics , Staining and Labeling
6.
Soft Matter ; 17(15): 4143-4150, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33735364

ABSTRACT

In any domain involving some stressed solids, that is, from seismology to general engineering, the strength of matter is a paramount feature to understand. We here discuss the ability of a simple thermally activated sub-critical model, which includes the auto-induced thermal evolution of cracks tips, to predict the catastrophic failure of a vast range of materials. It is in particular shown that the intrinsic surface energy barrier, for breaking the atomic bonds of many solids, can be easily deduced from the slow creeping dynamics of a crack. This intrinsic barrier is however higher than the macroscopic load threshold at which brittle matter brutally fails, possibly as a result of thermal activation and of a thermal weakening mechanism. We propose a novel method to compute this macroscopic energy release rate of rupture, Ga, solely from monitoring slow creep, and we show that this reproduces the experimental values within 50% accuracy over twenty different materials, and over more than four decades of fracture energy.

7.
Soft Matter ; 16(41): 9590-9602, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32986060

ABSTRACT

While of paramount importance in material science, the dynamics of cracks still lacks a complete physical explanation. The transition from their slow creep behavior to a fast propagation regime is a notable key, as it leads to full material failure if the size of a fast avalanche reaches that of the system. We here show that a simple thermodynamics approach can actually account for such complex crack dynamics, and in particular for the non-monotonic force-velocity curves commonly observed in mechanical tests on various materials. We consider a thermally activated failure process that is coupled with the production and the diffusion of heat at the fracture tip. In this framework, the rise in temperature only affects the sub-critical crack dynamics and not the mechanical properties of the material. We show that this description can quantitatively reproduce the rupture of two different polymeric materials (namely, the mode I opening of polymethylmethacrylate (PMMA) plates, and the peeling of pressure sensitive adhesive (PSA) tapes), from the very slow to the very fast fracturing regimes, over seven to nine decades of crack propagation velocities. In particular, the fastest regime is obtained with an increase of temperature of thousands of Kelvins, on the molecular scale around the crack tip. Although surprising, such an extreme temperature is actually consistent with different experimental observations that accompany the fast propagation of cracks, namely, fractoluminescence (i.e., the emission of visible light during rupture) and a complex morphology of post-mortem fracture surfaces, which could be due to the sublimation of bubbles.

8.
Phys Rev E ; 97(1-1): 012908, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448387

ABSTRACT

By means of digital image correlation, we experimentally characterize the deformation of a dry granular medium confined inside a Hele-Shaw cell due to air injection at a constant overpressure high enough to deform it (from 50 to 250 kPa). Air injection at these overpressures leads to the formation of so-called pneumatic fractures, i.e., channels empty of beads, and we discuss the typical deformations of the medium surrounding these structures. In addition we simulate the diffusion of the fluid overpressure into the medium, comparing it with the Laplacian solution over time and relating pressure gradients with corresponding granular displacements. In the compacting medium we show that the diffusing pressure field becomes similar to the Laplace solution on the order of a characteristic time given by the properties of the pore fluid, the granular medium, and the system size. However, before the diffusing pressure approaches the Laplace solution on the system scale, we find that it resembles the Laplacian field near the channels, with the highest pressure gradients on the most advanced channel tips and a screened pressure gradient behind them. We show that the granular displacements more or less always move in the direction against the local pressure gradients, and when comparing granular velocities with pressure gradients in the zone ahead of channels, we observe a Bingham type of rheology for the granular paste (the mix of air and beads), with an effective viscosity µ_{B} and displacement thresholds ∇[over ⃗]P_{c} evolving during mobilization and compaction of the medium. Such a rheology, with disorder in the displacement thresholds, could be responsible for placing the pattern growth at moderate injection pressures in a universality class like the dielectric breakdown model with η=2, where fractal dimensions are found between 1.5 and 1.6 for the patterns.

9.
Phys Rev Lett ; 119(15): 154503, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29077469

ABSTRACT

In this Letter we give experimental grounding for the remarkable observation made by Furuberg et al. [Phys. Rev. Lett. 61, 2117 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.2117] of an unusual dynamic scaling for the pair correlation function N(r,t) during the slow drainage of a porous medium. Those authors use an invasion percolation algorithm to show numerically that the probability of invasion of a pore at a distance r away and after a time t from the invasion of another pore scales as N(r,t)∝r^{-1}f(r^{D}/t), where D is the fractal dimension of the invading cluster and the function f(u)∝u^{1.4}, for u≪1 and f(u)∝u^{-0.6}, for u≫1. Our experimental setup allows us to have full access to the spatiotemporal evolution of the invasion, which is used to directly verify this scaling. Additionally, we connect two important theoretical contributions from the literature to explain the functional dependency of N(r,t) and the scaling exponent for the short-time regime (t≪r^{D}). A new theoretical argument is developed to explain the long-time regime exponent (t≫r^{D}).

10.
Phys Rev E ; 95(6-1): 062901, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709260

ABSTRACT

We perform experiments where air is injected at a constant overpressure P_{in}, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for P_{in} below 10 kPa, to large thick channels formed by erosion and fingers merging for high P_{in} around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w(d)∝d^{ß}, where ß=0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d^{2}d/dw^{2}∼κ∼d^{1-2ß}, but not of the slope dw/dd∼d^{ß-1}, i.e., more rounded tips rather than pointy cusps, as they would be for the case ß>1. For increasing P_{in}, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v_{0} is found to scale with injection pressure as v_{0}∝P_{in}^{3/2}, while at a critical time t_{c} there is a cross-over to the behavior v(t)∝t^{-α}, where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully developed patterns. For example, for patterns resulting from intermediate P_{in} around 100-150 kPa, we find that the box-counting dimensions lie within the range D_{B}∈[1.53,1.62], similar to viscous fingering fractals in porous media.

11.
Phys Rev E ; 95(2-1): 022136, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297953

ABSTRACT

Onsager reciprocity relations derive from the fundamental time reversibility of the underlying microscopic equations of motion. This gives rise to a large set of symmetric cross-coupling phenomena. We here demonstrate that different reciprocity relations may arise from the notion of mesoscopic time reversibility, i.e., reversibility of intrinsically coarse-grained equations of motion. We use Brownian dynamics as an example of such a dynamical description and show how it gives rise to reciprocity in the hydrodynamic dispersion tensor as long as the background flow velocity is reversed as well.

12.
Rev Sci Instrum ; 87(9): 096101, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782579

ABSTRACT

Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).

13.
Soft Matter ; 12(25): 5563-71, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27240655

ABSTRACT

Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such a temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes. Therefore, to better understand catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat. By monitoring the slow crack growth in paper sheets using an infrared camera, we measure a significant fraction α = 12% ± 4%. Besides, we show that (self-generated) heat accumulation could weaken our samples by microfiber combustion, and lead to a fast crack/dynamic failure/regime.

14.
Phys Rev E ; 93: 042902, 2016 04.
Article in English | MEDLINE | ID: mdl-27176375

ABSTRACT

The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

15.
Article in English | MEDLINE | ID: mdl-26465465

ABSTRACT

Experiments on confined two-phase flow systems, involving air and a dense suspension, have revealed a diverse set of flow morphologies. As the air displaces the suspension, the beads that make up the suspension can accumulate along the interface. The dynamics can generate "frictional fingers" of air coated by densely packed grains. We present here a simplified model for the dynamics together with a new numerical strategy for simulating the frictional finger behavior. The model is based on the yield stress criterion of the interface. The discretization scheme allows for simulating a larger range of structures than previous approaches. We further make theoretical predictions for the characteristic width associated with the frictional fingers, based on the yield stress criterion, and compare these to experimental results. The agreement between theory and experiments validates our model and allows us to estimate the unknown parameter in the yield stress criterion, which we use in the simulations.

16.
Article in English | MEDLINE | ID: mdl-26066170

ABSTRACT

Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with peak to peak length measurements of the experimentally observed undulations.

17.
Article in English | MEDLINE | ID: mdl-24580339

ABSTRACT

In a plane Couette cell a thin fluid layer consisting of water is sheared between the sides of a transparent band at Reynolds numbers ranging from 300 to 1400. The length of the cell's flow channel is large compared to the film separation. To extract the flow velocity in the experiments, a correlation image velocimetry method is used on pictures recorded with a high-speed camera. The flow is recorded at a resolution that allows us to analyze flow patterns similar in size to the film separation. The fluid flow is then studied by calculating flow velocity autocorrelation functions. The turbulent patterns that arise on this scale above a critical Reynolds number of Re=360 display characteristic patterns that are proven by use of the calculated velocity autocorrelation functions. The patterns are metastable and reappear at different positions and times throughout the experiments. Typically these patterns are turbulent rolls which are elongated in the stream direction, which is the direction in which the band is moving. Although the flow states are metastable they possess similarities to the steady Taylor vortices known to appear in circular Taylor Couette cells.

18.
Phys Rev Lett ; 110(14): 145501, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-25167006

ABSTRACT

We study the fluctuations of the global velocity V(l)(t), computed at various length scales l, during the intermittent mode-I propagation of a crack front. The statistics converge to a non-Gaussian distribution, with an asymmetric shape and a fat tail. This breakdown of the central limit theorem (CLT) is due to the diverging variance of the underlying local crack front velocity distribution, displaying a power law tail. Indeed, by the application of a generalized CLT, the full shape of our experimental velocity distribution at large scale is shown to follow the stable Levy distribution, which preserves the power law tail exponent under upscaling. This study aims to demonstrate in general for crackling noise systems how one can infer the complete scale dependence of the activity--and extreme event distributions--by measuring only at a global scale.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061315, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23367940

ABSTRACT

A transition in hydraulically induced granular displacement patterns is studied by means of discrete numerical molecular dynamics simulations. During this transition the patterns change from fractures and fingers to finely dispersed bubbles. The dynamics of the displacement patterns are studied in a rectangular Hele-Shaw cell filled with a dense but permeable two-dimensional granular layer. At one side of the cell the pressure of the compressible interstitial gas is increased. At the opposite side from the inlet of the cell a semipermeable boundary is located. This boundary is only permeable towards the gas phase while preventing grains from leaving the cell. The imposed pressure gradient compacts the grains. In the process we can identify and describe a mechanism that controls the transition of the emerging displacement patterns from fractures and fingers to finely dispersed bubbles as a function of the interstitial gas's properties and the characteristics of the granular phase.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036104, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22060453

ABSTRACT

We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...