Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648089

ABSTRACT

Cover crops, a soil conservation practice, can contribute to reducing disease pressure caused by Pseudomonas syringae, considered one of the most important bacterial plant pathogens. We recently demonstrated that phyllosphere (leaf surface) bacterial community structure changed when squash (Cucurbita pepo) was grown with a rye (Secale cereale) cover crop treatment, followed by a decrease of angular leaf spot (ALS) disease symptoms on squash caused by P. syringae pv. lachrymans. Application of biocontrol agents is a known agricultural practice to mitigate crop losses due to microbial disease. In this study, we tested the hypothesis that some phyllosphere bacteria promoted when squash are grown on cover crops could be isolated and used as a biocontrol agent to decrease ALS symptoms. We grew squash during a two-year field experiment using four agricultural practices: bare soil, cover crops, chemically terminated cover crops, and plastic cover. We sampled squash leaves at 3 different dates each year and constructed a collection of cultivable bacterial strains isolated from squash leaves and rye cover crop material. Each isolated strain was identified by 16S rRNA gene sequencing and used in in vitro (Petri dish) pathogen growth and in vivo (greenhouse) symptom control assays. Four bacterial isolates belonging to the genera Pseudarthrobacter, Pseudomonas, Delftia and Rhizobium were shown to inhibit P. syringae pv. lachrymans growth and ALS symptom development. Strikingly, the symptom control efficacy of all strains was stronger on older leaves. This study sheds light on the importance of bacterial isolation from cover crops sources to promote disease control.

2.
Front Plant Sci ; 10: 351, 2019.
Article in English | MEDLINE | ID: mdl-30984219

ABSTRACT

Bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) places a major constraint on lettuce production worldwide. The most sustainable strategy known to date for controlling BLS is the use of resistant cultivars. The nutrient elemental signature (ionome) of ten lettuce cultivars with three levels of resistance was analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine which nutrient balances are linked to resistance to BLS, and to assess the effect of Xcv infection on the ionome. The elemental concentrations were preprocessed with isometric log-ratios to define nutrient balances. Using this approach, 4 out of 11 univariate nutrient balances were found to significantly influence the resistance of lettuce cultivars to BLS (P < 0.05). These significant balances were the overall nutritional status balancing all measured nutrients with their complementary in the dry mass, as well as balances [Mn | Zn,Cu], [Zn | Cu], and [S,N | P]. Moreover, the infection of lettuce cultivars mostly affected the lettuce ionome on the [N,S | P] balance, where infection tended to lean the balance toward the N,S part relatively to P. This study shows that nutrient uptake in lettuce can be affected by BLS infection and that nutrient status influences resistance to BLS infection.

3.
Can J Microbiol ; 65(7): 496-509, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30901526

ABSTRACT

Erwinia amylovora and Pseudomonas syringae are bacterial phytopathogens responsible for considerable yield losses in commercial pome fruit production. The pathogens, if left untreated, can compromise tree health and economically impact entire commercial fruit productions. Historically, the choice of effective control methods has been limited. The use of antibiotics was proposed as an effective control method. The identification of these pathogens and screening for the presence of antibiotic resistance is paramount in the adoption and implementation of disease control methods. Molecular tests have been developed and accepted for identification and characterization of these disease-causing organisms. We improved existing molecular tests by developing methods that are equal or superior in robustness for identifying E. amylovora or P. syringae while being faster to execute. In addition, the real-time PCR-based detection method for E. amylovora provided complementary information on the susceptibility or resistance to streptomycin of individual isolates. Finally, we describe a methodology and results that compare the aggressiveness of the different bacterial isolates on four apple cultivars. We show that bacterial isolates exhibit different behaviors when brought into contact with various apple varieties and that the hierarchical clustering of symptom severity indicates a population structure, suggesting a genetic basis for host cultivar specificity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Erwinia amylovora/isolation & purification , Pseudomonas syringae/isolation & purification , Streptomycin/pharmacology , Erwinia amylovora/drug effects , Malus/microbiology , Microbial Sensitivity Tests , Molecular Typing , Plant Diseases/microbiology , Pseudomonas syringae/drug effects , Real-Time Polymerase Chain Reaction
4.
Microbes Environ ; 31(4): 418-426, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27795492

ABSTRACT

Suberin is a complex lipidic plant polymer found in various tissues including the potato periderm. The biological degradation of suberin is attributed to fungi. Soil samples from a potato field were used to inoculate a culture medium containing suberin as the carbon source, and a metaproteomic approach was used to identify bacteria that developed in the presence of suberin over a 60-d incubation period. The normalized spectral counts of predicted extracellular proteins produced by the soil bacterial community markedly decreased from day 5 to day 20 and then slowly increased, revealing a succession of bacteria. The population of fast-growing pseudomonads declined and was replaced by species with the ability to develop in the presence of suberin. The recalcitrance of suberin was demonstrated by the emergence of auxotrophic bacteria such as Oscillatoria on the last days of the assay. Nevertheless, two putative lipases from Rhodanobacter thiooxydans (I4WGM2) and Myxococcus xanthus (Q1CWS1) were detected in the culture supernatants, suggesting that at least some bacterial species degrade suberin. When grown in suberin-containing medium, R. thiooxydans strain LCS2 and M. xanthus strain DK 1622 both produced three lipases, including I4WGM2 and Q1CWS1. These strains also produced other proteins linked to lipid metabolism, including fatty acid and lipid transporters and ß-oxidation enzymes, suggesting that they participate in the degradation of suberin. However, only the R. thiooxydans strain appeared to retrieve sufficient carbon and energy from this recalcitrant polymer in order to maintain its population over an extended period of time.


Subject(s)
Bacteria/chemistry , Bacteria/growth & development , Biopolymers/metabolism , Lipid Metabolism , Lipids , Proteome/analysis , Soil Microbiology , Bacteria/classification , Bacteria/isolation & purification , Carbon/metabolism , Culture Media/chemistry , Solanum tuberosum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...