Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol Rep ; 9(6): 750-755, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892304

ABSTRACT

Marine sponges host stable and species-specific microbial symbionts that are thought to be acquired and maintained by the host through a combination of vertical transmission and filtration from the surrounding seawater. To assess whether the microbial symbionts also actively contribute to the establishment of these symbioses, we performed in situ experiments on Orpheus Island, Great Barrier Reef, to quantify the chemotactic responses of natural populations of seawater microorganisms towards cellular extracts of the reef sponge Rhopaloeides odorabile. Flow cytometry analysis revealed significant levels of microbial chemotaxis towards R. odorabile extracts and 16S rRNA gene amplicon sequencing showed enrichment of 'sponge-specific' microbial phylotypes, including a cluster within the Gemmatimonadetes and another within the Actinobacteria. These findings infer a potential mechanism for how sponges can acquire bacterial symbionts from the surrounding environment and suggest an active role of the symbionts in finding their host.


Subject(s)
Bacterial Physiological Phenomena , Chemotaxis , Porifera/microbiology , Symbiosis , Actinobacteria/genetics , Actinobacteria/physiology , Animals , Bacteria/classification , Bacteria/genetics , Flow Cytometry , Porifera/chemistry , Queensland , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA
2.
ISME J ; 10(6): 1363-72, 2016 06.
Article in English | MEDLINE | ID: mdl-26636553

ABSTRACT

Evidence to date indicates that elevated seawater temperatures increase the occurrence of coral disease, which is frequently microbial in origin. Microbial behaviors such as motility and chemotaxis are often implicated in coral colonization and infection, yet little is known about the effect of warming temperatures on these behaviors. Here we present data demonstrating that increasing water temperatures induce two behavioral switches in the coral pathogen Vibrio coralliilyticus that considerably augment the bacterium's performance in tracking the chemical signals of its coral host, Pocillopora damicornis. Coupling field-based heat-stress manipulations with laboratory-based observations in microfluidic devices, we recorded the swimming behavior of thousands of individual pathogen cells at different temperatures, associated with current and future climate scenarios. When temperature reached ⩾23 °C, we found that the pathogen's chemotactic ability toward coral mucus increased by >60%, denoting an enhanced capability to track host-derived chemical cues. Raising the temperature further, to 30 °C, increased the pathogen's chemokinetic ability by >57%, denoting an enhanced capability of cells to accelerate in favorable, mucus-rich chemical conditions. This work demonstrates that increasing temperature can have strong, multifarious effects that enhance the motile behaviors and host-seeking efficiency of a marine bacterial pathogen.


Subject(s)
Anthozoa/microbiology , Seawater/microbiology , Vibrio/physiology , Animals , Anthozoa/chemistry , Chemotaxis , Coral Reefs , Host-Pathogen Interactions , Temperature
3.
Front Microbiol ; 6: 432, 2015.
Article in English | MEDLINE | ID: mdl-26042096

ABSTRACT

Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2-3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon sequencing revealed a large shift in the composition of the bacterial community at 31°C, with a notable increase in Vibrio, including known coral pathogens. To investigate the dynamics of the naturally occurring Vibrio community, we performed quantitative PCR targeting (i) the whole Vibrio community and (ii) the coral pathogen Vibrio coralliilyticus. At 31°C, Vibrio abundance increased by 2-3 orders of magnitude and V. coralliilyticus abundance increased by four orders of magnitude. Using a Vibrio-specific amplicon sequencing assay, we further demonstrated that the community composition shifted dramatically as a consequence of heat stress, with significant increases in the relative abundance of known coral pathogens. Our findings provide quantitative evidence that the abundance of potential coral pathogens increases within natural communities of coral-associated microbes as a consequence of rising seawater temperature and highlight the potential negative impacts of anthropogenic climate change on coral reef ecosystems.

4.
ISME J ; 9(8): 1764-77, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25615440

ABSTRACT

Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.


Subject(s)
Anthozoa/microbiology , Bacteria/drug effects , Chemotaxis/drug effects , Coral Reefs , Animals , Bacteria/genetics , Chemotactic Factors/pharmacology , DNA, Bacterial/analysis , Metagenome , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sulfonium Compounds/pharmacology , Vibrio/genetics
5.
Microb Ecol ; 67(3): 540-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24477921

ABSTRACT

To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.


Subject(s)
Archaea/genetics , Bacteria/genetics , Biodiversity , Coral Reefs , Environment , Metagenome , Seawater/microbiology , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Molecular Sequence Data , Phylogeny , Queensland , Sequence Analysis, DNA
6.
ISME J ; 8(5): 999-1007, 2014 May.
Article in English | MEDLINE | ID: mdl-24335830

ABSTRACT

Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen's chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways.


Subject(s)
Anthozoa/microbiology , Chemotaxis , Sulfonium Compounds/metabolism , Vibrio/physiology , Animals , Coral Reefs , Hot Temperature , Seawater/microbiology , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...