Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 142(20): 3922-3933, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28930308

ABSTRACT

Chemosensors for the detection of phosphate-containing biological species are in high need. Detection of proximally phosphorylated sites of PPi and those found in peptides and proteins has been demonstrated using chemosensors containing pyrene, as a fluorescent reporter, and a Zn2+-chelate, as a phosphate-binding group. Using these sensors, detection of proximal phosphate groups is afforded by binding of at least two of the sensor molecules to the adjacent phosphates, via the Zn2+ centres, leading to excimer formation between the pyrene groups and the corresponding shift in emission from 376 to 476 nm. Although several reports of this chemosensor class have been made, no detailed studies of selectivity of these sensors among major phosphate targets have been reported. In this study, a library of this class of chemosensors, termed ProxyPhos, which contained various linkers and Zn2+-chelating groups (i.e. DPA, cyclen and cyclam), was prepared and the effects of structural variation on the sensing efficiency and selectivity were evaluated among proximally phosphorylated peptides, proteins, nucleotides, Pi and PPi. As a result of this study, we have identified ProxyPhos library members that are most suitable for the detection of proximally phosphorylated peptides, PPi, UTP, and a DpYD peptide motif, and have generally provided a foundation for the selection of ProxyPhos chemosensors for further development of specific biologically relevant assays. The broad utility of ProxyPhos is further supported by the demonstrated lack of these sensors' cytotoxicity, ability to rapidly permeate into live and fixed cells and compatibility with gel staining methods.


Subject(s)
Biosensing Techniques , Peptides/chemistry , Phosphates/analysis , Phosphorylation , Molecular Structure , Structure-Activity Relationship , Zinc
2.
Analyst ; 142(13): 2451-2459, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28574079

ABSTRACT

Proximal phosphorylation on proteins appears to have functional significance and has been associated with several diseases, including Alzheimer's and cancer. While much remains to be learned about the role of proximal phosphorylation in biological systems, no simple and/or affordable technique is available for its detection. To this end, we have previously developed a ProxyPhos chemosensor, which detects proximally phosphorylated peptides and proteins over mono- and non-phosphorylated motifs in aqueous solutions. In this follow-up work, we performed extensive characterization of peptide and protein ProxyPhos assay conditions to achieve enhanced detection, and further explored the selectivity of ProxyPhos, and its potential off-targets. As a result of characterization studies, selective sensing of proximally phosphorylated over mono-phosphorylated peptides and proteins was achieved. Moreover, studies demonstrated that ProxyPhos was compatible with the detection of all commonly phosphorylated residues (i.e. tyrosine, serine and threonine residues). Under optimized conditions, ProxyPhos efficiently discriminated between peptides derived from the activated (proximally phosphorylated, disease-relevant) and inactive (mono-phosphorylated) forms of JAK2, SYK and MAPK1 kinases. In addition, ProxyPhos can be used to probe phosphatase activity on peptides and proteins via detecting changes in proximal phosphorylation, demonstrating immediate utility of this chemosensing system.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Spectrometry, Fluorescence , Fluorescent Dyes , Phosphorylation , Serine , Threonine , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...