Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 35(4): e21360, 2021 04.
Article in English | MEDLINE | ID: mdl-33749932

ABSTRACT

The novel coronavirus disease, COVID-19, has grown into a global pandemic and a major public health threat since its breakout in December 2019. To date, no specific therapeutic drug or vaccine for treating COVID-19 and SARS has been FDA approved. Previous studies suggest that berberine, an isoquinoline alkaloid, has shown various biological activities that may help against COVID-19 and SARS, including antiviral, anti-allergy and inflammation, hepatoprotection against drug- and infection-induced liver injury, as well as reducing oxidative stress. In particular, berberine has a wide range of antiviral activities such as anti-influenza, anti-hepatitis C, anti-cytomegalovirus, and anti-alphavirus. As an ingredient recommended in guidelines issued by the China National Health Commission for COVID-19 to be combined with other therapy, berberine is a promising orally administered therapeutic candidate against SARS-CoV and SARS-CoV-2. The current study comprehensively evaluates the potential therapeutic mechanisms of berberine in preventing and treating COVID-19 and SARS using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analysis, and in silico molecular docking. An orally available immunotherapeutic-berberine nanomedicine, named NIT-X, has been developed by our group and has shown significantly increased oral bioavailability of berberine, increased IFN-γ production by CD8+ T cells, and inhibition of mast cell histamine release in vivo, suggesting a protective immune response. We further validated the inhibition of replication of SARS-CoV-2 in lung epithelial cells line in vitro (Calu3 cells) by berberine. Moreover, the expression of targets including ACE2, TMPRSS2, IL-1α, IL-8, IL-6, and CCL-2 in SARS-CoV-2 infected Calu3 cells were significantly suppressed by NIT-X. By supporting protective immunity while inhibiting pro-inflammatory cytokines; inhibiting viral infection and replication; inducing apoptosis; and protecting against tissue damage, berberine is a promising candidate in preventing and treating COVID-19 and SARS. Given the high oral bioavailability and safety of berberine nanomedicine, the current study may lead to the development of berberine as an orally, active therapeutic against COVID-19 and SARS.


Subject(s)
Antiviral Agents/pharmacology , Berberine/pharmacology , COVID-19 Drug Treatment , COVID-19 , Gene Expression Regulation/drug effects , Models, Biological , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome , Severe acute respiratory syndrome-related coronavirus/metabolism , Administration, Oral , COVID-19/metabolism , Cell Line , Computer Simulation , Humans , Pandemics , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/metabolism
2.
Org Lett ; 22(3): 804-808, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31927933

ABSTRACT

A new class of organosilicon-based radiosynthons, heteroaromatic silicon-fluoride acceptors, namely, HetSiFAs, that readily undergo isotope exchange with dry [18F]fluoride at room temperature in high radiochemical yield (up to 94%) with good molar activity is reported. Radiofluorination proceeds in a single step in 2 min without high-performance liquid chromatography purification to provide an operationally simple method for 18F-PET tracer production. This method was used to prepare an 18F-labeled commercial tetrapeptide, and positron emission tomography imaging confirmed in vivo stability.


Subject(s)
Isotope Labeling , Organosilicon Compounds/chemistry , Peptides/chemistry , Radiopharmaceuticals/chemistry , Animals , Fluorine Radioisotopes/chemistry , Mice , Mice, Inbred C57BL , Molecular Structure , Organosilicon Compounds/chemical synthesis , Organosilicon Compounds/pharmacokinetics , Peptides/pharmacokinetics , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Stereoisomerism
3.
J Am Chem Soc ; 139(20): 6880-6887, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28462580

ABSTRACT

Exploiting C-H bond activation is difficult, although some success has been achieved using precious metal catalysts. Recently, it was reported that C-H bonds in aromatic heterocycles were converted to C-Si bonds by reaction with hydrosilanes under the catalytic action of potassium tert-butoxide alone. The use of Earth-abundant potassium cation as a catalyst for C-H bond functionalization seems to be without precedent, and no mechanism for the process was established. Using ambient ionization mass spectrometry, we are able to identify crucial ionic intermediates present during the C-H silylation reaction. We propose a plausible catalytic cycle, which involves a pentacoordinate silicon intermediate consisting of silane reagent, substrate, and the tert-butoxide catalyst. Heterolysis of the Si-H bond, deprotonation of the heteroarene, addition of the heteroarene carbanion to the silyl ether, and dissociation of tert-butoxide from silicon lead to the silylated heteroarene product. The steps of the silylation mechanism may follow either an ionic route involving K+ and tBuO- ions or a neutral heterolytic route involving the [KOtBu]4 tetramer. Both mechanisms are consistent with the ionic intermediates detected experimentally. We also present reasons why KOtBu is an active catalyst whereas sodium tert-butoxide and lithium tert-butoxide are not, and we explain the relative reactivities of different (hetero)arenes in the silylation reaction. The unique role of KOtBu is traced, in part, to the stabilization of crucial intermediates through cation-π interactions.

4.
J Am Chem Soc ; 139(20): 6867-6879, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28403611

ABSTRACT

We recently reported a new method for the direct dehydrogenative C-H silylation of heteroaromatics utilizing Earth-abundant potassium tert-butoxide. Herein we report a systematic experimental and computational mechanistic investigation of this transformation. Our experimental results are consistent with a radical chain mechanism. A trialkylsilyl radical may be initially generated by homolytic cleavage of a weakened Si-H bond of a hypercoordinated silicon species as detected by IR, or by traces of oxygen which can generate a reactive peroxide by reaction with [KOt-Bu]4 as indicated by density functional theory (DFT) calculations. Radical clock and kinetic isotope experiments support a mechanism in which the C-Si bond is formed through silyl radical addition to the heterocycle followed by subsequent ß-hydrogen scission. DFT calculations reveal a reasonable energy profile for a radical mechanism and support the experimentally observed regioselectivity. The silylation reaction is shown to be reversible, with an equilibrium favoring products due to the generation of H2 gas. In situ NMR experiments with deuterated substrates show that H2 is formed by a cross-dehydrogenative mechanism. The stereochemical course at the silicon center was investigated utilizing a 2H-labeled silolane probe; complete scrambling at the silicon center was observed, consistent with a number of possible radical intermediates or hypercoordinate silicates.

5.
J Am Chem Soc ; 139(4): 1668-1674, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28026952

ABSTRACT

Disclosed is a mild, scalable, and chemoselective catalytic cross-dehydrogenative C-H bond functionalization protocol for the construction of C(sp)-Si bonds in a single step. The scope of the alkyne and hydrosilane partners is substantial, providing an entry point into various organosilane building blocks and additionally enabling the discovery of a number of novel synthetic strategies. Remarkably, the optimal catalysts are NaOH and KOH.

6.
Org Lett ; 18(22): 5776-5779, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27934488

ABSTRACT

An O-Si bond construction protocol employing abundantly available and inexpensive NaOH as the catalyst is described. The method enables the cross-dehydrogenative coupling of an alcohol and hydrosilane to directly generate the corresponding silyl ether under mild conditions and without the production of stoichiometric salt byproducts. The scope of both coupling partners is excellent, positioning the method for use in complex molecule and materials science applications. A novel Si-based cross-coupling reagent is also reported.

7.
Nat Protoc ; 10(12): 1897-903, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26513668

ABSTRACT

This protocol describes a method for the direct silylation of the carbon-hydrogen (C-H) bond of aromatic heterocycles using inexpensive and abundant potassium tert-butoxide (KOt-Bu) as the catalyst. This catalytic cross-dehydrogenative coupling of simple hydrosilanes and various electron-rich aromatic heterocycles enables the synthesis of valuable silylated heteroarenes. The products thus obtained can be used as versatile intermediates, which facilitate the divergent synthesis of pharmaceutically relevant compound libraries from a single Si-containing building block. Moreover, a variety of complex Si-containing motifs, such as those produced by this protocol, are being actively investigated as next-generation therapeutic agents, because they can have improved pharmacokinetic properties compared with the original all-carbon drug molecules. Current competing methods for C-H bond silylation tend to be incompatible with functionalities, such as Lewis-basic heterocycles, that are often found in pharmaceutical substances; this leaves de novo synthesis as the principal strategy for preparation of the target sila-drug analog. Moreover, competing methods tend to be limited in the scope of hydrosilane that can be used, which restricts the breadth of silicon-containing small molecules that can be accessed. The approach outlined in this protocol enables the chemoselective and regioselective late-stage silylation of small heterocycles, including drugs and drug derivatives, with a broad array of hydrosilanes in the absence of precious metal catalysts, stoichiometric reagents, sacrificial hydrogen acceptors or high temperatures. Moreover, H2 is the only by-product generated. The procedure normally requires 48-75 h to be completed.


Subject(s)
Heterocyclic Compounds/chemistry , Hydrocarbons, Aromatic/chemistry , Pharmaceutical Preparations/chemistry , Silanes/chemistry , Small Molecule Libraries/chemistry , Butanols/chemistry , Catalysis , Chemistry Techniques, Synthetic/methods , Heterocyclic Compounds/chemical synthesis , Hydrocarbons, Aromatic/chemical synthesis , Hydrogenation , Pharmaceutical Preparations/chemical synthesis , Silanes/chemical synthesis , Small Molecule Libraries/chemical synthesis
8.
Nature ; 518(7537): 80-4, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25652999

ABSTRACT

Heteroaromatic compounds containing carbon-silicon (C-Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C-Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon-hydrogen (C-H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C-Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C-H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications.


Subject(s)
Butanols/chemistry , Carbon/chemistry , Hydrogen/chemistry , Potassium/chemistry , Silanes/chemistry , Silanes/chemical synthesis , Silicon/chemistry , Catalysis , Cyclization , Drug Discovery , Indoles/chemistry , Nitrogen/chemistry , Oxygen/chemistry
9.
Angew Chem Int Ed Engl ; 51(11): 2722-6, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22298342

ABSTRACT

Strolling the ring: a general regioselective directed peri(C4)-metalation route to 1 through an in situ N-anionic protection of C2 is reported. The azaindoles may be elaborated by directed ortho metalation (DoM) and Suzuki coupling to more complex heterocyclic systems. An iterative ring-walk DoM sequence furnishes the exhaustively substituted 2. DMG=directed metalation group, TMEDA=N,N,N',N'-tetramethylethylenediamine, TMS=trimethylsilyl.

SELECTION OF CITATIONS
SEARCH DETAIL
...