Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0267509, 2022.
Article in English | MEDLINE | ID: mdl-35452491

ABSTRACT

ß-Mannans are a heterogeneous group of polysaccharides with a common main chain of ß-1,4-linked mannopyranoside residues. The cleavage of ß-mannan chains is catalyzed by glycoside hydrolases called ß-mannanases. In the CAZy database, ß-mannanases are grouped by sequence similarity in families GH5, GH26, GH113 and GH134. Family GH113 has been under-explored so far with six enzymes characterized, all from the Firmicutes phylum. We undertook the functional characterization of 14 enzymes from a selection of 31 covering the diversity of the family GH113. Our observations suggest that GH113 is a family with specificity towards mannans, with variations in the product profiles and modes of action. We were able to assign mannanase and mannosidase activities to four out of the five clades of the family, increasing by 200% the number of characterized GH113 members, and expanding the toolbox for fine-tuning of mannooligosaccharides.


Subject(s)
Firmicutes , Glycoside Hydrolases , Mannans , Firmicutes/enzymology , Firmicutes/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Mannans/chemistry , Mannose , Substrate Specificity , beta-Mannosidase/metabolism
2.
Sci Rep ; 8(1): 8075, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29795267

ABSTRACT

In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.


Subject(s)
Alginates/metabolism , Bacteria/metabolism , Gastrointestinal Microbiome , Polysaccharide-Lyases/metabolism , Bacteria/genetics , Gene Expression Regulation, Bacterial , Humans , Multigene Family , Phylogeny , Polysaccharide-Lyases/genetics , Substrate Specificity
3.
Chem Biol Interact ; 267: 11-16, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-26972668

ABSTRACT

Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 µmol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice.


Subject(s)
Blood Chemical Analysis/methods , Blood-Brain Barrier/drug effects , Chemical Warfare Agents/toxicity , Cholinesterase Reactivators/blood , Organothiophosphorus Compounds/toxicity , Oximes/pharmacology , Pralidoxime Compounds/pharmacology , Pyridinium Compounds/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Blood-Brain Barrier/metabolism , Erythrocytes/cytology , Erythrocytes/enzymology , Half-Life , Humans , Injections, Intraperitoneal , Male , Mice , Oximes/metabolism , Pralidoxime Compounds/metabolism , Protective Agents/metabolism , Protective Agents/pharmacology , Pyridinium Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...