Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 9(2): 269-284, 2017.
Article in English | MEDLINE | ID: mdl-27929753

ABSTRACT

Exudative age-related macular degeneration (AMD) is the most common cause of moderate and severe vision loss in developed countries. Intraocular injections of vascular endothelial growth factor (VEGF or VEGF-A)-neutralizing proteins provide substantial benefit, but frequent, long-term injections are needed. In addition, many patients experience initial visual gains that are ultimately lost due to subretinal fibrosis. Preclinical studies and early phase clinical trials suggest that combined suppression of VEGF and platelet-derived growth factor-BB (PDGF-BB) provides better outcomes than suppression of VEGF alone, due to more frequent regression of neovascularization (NV) and suppression of subretinal fibrosis. We generated a dual variable domain immunoglobulin molecule, ABBV642 that specifically and potently binds and neutralizes VEGF and PDGF-BB. ABBV642 has been optimized for treatment of exudative AMD based on the following design characteristics: 1) high affinity binding to all VEGF-A isoforms and both soluble and extracellular matrix (ECM)-associated PDGF-BB; 2) potential for extended residence time in the vitreous cavity to decrease the frequency of intraocular injections; 3) rapid clearance from systemic circulation compared with molecules with wild type Fc region for normal FcRn binding, which may reduce the risk of systemic complications; and 4) low risk of potential effector function. The bispecificity of ABBV642 allows for a single injection of a single therapeutic agent, and thus a more streamlined development and regulatory path compared with combination products. In a mouse model of exudative AMD, ABBV642 was observed to be more effective than aflibercept. ABBV642 has potential to improve efficacy with reduced injection frequency in patients with exudative AMD, thereby reducing the enormous disease burden for patients and society.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Bispecific/pharmacology , Macular Degeneration/drug therapy , Proto-Oncogene Proteins c-sis/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Becaplermin , Female , Humans , Male , Mice , Mice, Transgenic , Protein Engineering , Rabbits
2.
PLoS Biol ; 10(1): e1001242, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22272184

ABSTRACT

Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM) that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Ion Channels/metabolism , Multigene Family , Porins/metabolism , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Conserved Sequence/genetics , Crystallography, X-Ray , Humans , Ion Channel Gating/drug effects , Ion Channels/chemistry , Models, Biological , Models, Molecular , Porins/chemistry , Porosity/drug effects , Protein Binding/drug effects , Protein Structure, Secondary , Protein Transport/drug effects , Pseudomonas aeruginosa/drug effects , Substrate Specificity/drug effects
3.
PLoS One ; 5(11): e15016, 2010 Nov 29.
Article in English | MEDLINE | ID: mdl-21124774

ABSTRACT

BACKGROUND: The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. METHODOLOGY/PRINCIPAL FINDINGS: In order to obtain more information about possible functions of OmpW family members we have solved the X-ray crystal structure of P. aeruginosa OprG at 2.4 Å resolution. OprG forms an eight-stranded ß-barrel with a hydrophobic channel that leads from the extracellular surface to a lateral opening in the barrel wall. The OprG barrel is closed off from the periplasm by interacting polar and charged residues on opposite sides of the barrel wall. CONCLUSIONS/SIGNIFICANCE: The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/physiology , Cell Membrane/metabolism , Models, Biological , Bacterial Outer Membrane Proteins/genetics , Biological Transport , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Ion Channels/chemistry , Ion Channels/genetics , Ion Channels/physiology , Models, Molecular , Periplasm/metabolism , Protein Conformation , Protein Structure, Tertiary
4.
J Am Chem Soc ; 132(38): 13240-50, 2010 Sep 29.
Article in English | MEDLINE | ID: mdl-20825181

ABSTRACT

Over the past two decades, designed metallopeptides have held the promise for understanding a variety of fundamental questions in metallobiochemistry; however, these dreams have not yet been realized because of a lack of structural data to elaborate the protein scaffolds before metal complexation and the resultant metalated structures which ultimately exist. This is because there are few reports of structural characterization of such systems either in their metalated or nonmetalated forms and no examples where an apo structure and the corresponding metalated peptide assembly have both been defined by X-ray crystallography. Herein we present X-ray structures of two de novo designed parallel three-stranded coiled coils (designed using the heptad repeat (a → g)) CSL9C (CS = Coil Ser) and CSL19C in their nonmetalated forms, determined to 1.36 and 2.15 A resolutions, respectively. Leucines from either position 9 (a site) or 19 (d site) are replaced by cysteine to generate the constructs CSL9C and CSL19C, respectively, yielding thiol-rich pockets at the hydrophobic interior of these peptides, suitable to bind heavy metals such as As(III), Hg(II), Cd(II), and Pb(II). We use these structures to understand the inherent structural differences between a and d sites to clarify the basis of the observed differential spectroscopic behavior of metal binding in these types of peptides. Cys side chains of (CSL9C)(3) show alternate conformations and are partially preorganized for metal binding, whereas cysteines in (CSL19C)(3) are present as a single conformer. Zn(II) ions, which do not coordinate or influence Cys residues at the designed metal sites but are essential for forming X-ray quality crystals, are bound to His and Glu residues at the crystal packing interfaces of both structures. These "apo" structures are used to clarify the changes in metal site organization between metalated As(CSL9C)(3) and to speculate on the differential basis of Hg(II) binding in a versus d peptides. Thus, for the first time, one can establish general rules for heavy metal binding to Cys-rich sites in designed proteins which may provide insight for understanding how heavy metals bind to metallochaperones or metalloregulatory proteins.


Subject(s)
Metals/chemistry , Peptides/chemistry , Sulfhydryl Compounds/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Molecular Structure
5.
Proc Natl Acad Sci U S A ; 104(29): 11969-74, 2007 Jul 17.
Article in English | MEDLINE | ID: mdl-17609383

ABSTRACT

Arsenic, a contaminant of water supplies worldwide, is one of the most toxic inorganic ions. Despite arsenic's health impact, there is relatively little structural detail known about its interactions with proteins. Bacteria such as Escherichia coli have evolved arsenic resistance using the Ars operon that is regulated by ArsR, a repressor protein that dissociates from DNA when As(III) binds. This protein undergoes a critical conformational change upon binding As(III) with three cysteine residues. Unfortunately, structures of ArsR with or without As(III) have not been reported. Alternatively, de novo designed peptides can bind As(III) in an endo configuration within a thiolate-rich environment consistent with that proposed for both ArsR and ArsD. We report the structure of the As(III) complex of Coil Ser L9C to a 1.8-A resolution, providing x-ray characterization of As(III) in a Tris thiolate protein environment and allowing a structural basis by which to understand arsenated ArsR.


Subject(s)
Arsenic/metabolism , Bacterial Proteins/chemistry , Escherichia coli/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Leucine , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Protein Structure, Secondary , Static Electricity , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...