Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38937969

ABSTRACT

Gene editing technologies hold promise for enabling the next generation of adoptive cellular therapies. Conventional gene editing platforms that rely on nuclease activity, such as Clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9), allow efficient introduction of genetic modifications; however, these modifications occur via the generation of DNA double-strand breaks (DSBs) and can lead to unwanted genomic alterations and genotoxicity. Here, we apply a novel modular RNA aptamer-mediated Pin-point™ base editing platform to simultaneously introduce multiple gene knockouts and site-specific integration of a transgene in human primary T cells. We demonstrate high editing efficiency and purity at all target sites and significantly reduced frequency of chromosomal translocations compared to the conventional CRISPR-Cas9 system. Site-specific knock-in of a chimeric antigen receptor (CAR) and multiplex gene knockout are achieved within a single intervention and without the requirement for additional sequence-targeting components. The ability to perform complex genome editing efficiently and precisely highlights the potential of the Pin-point platform for application in a range of advanced cell therapies.

2.
Nat Commun ; 14(1): 5474, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673883

ABSTRACT

Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes.


Subject(s)
Proprotein Convertase 9 , Translocation, Genetic , Animals , Mice , Proprotein Convertase 9/genetics , CRISPR-Cas Systems/genetics , Mutation , Endonucleases/genetics , Streptococcus pyogenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...