Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38441904

ABSTRACT

Objective: Continuous glucose monitoring (CGM) devices are integral in the outpatient care of people with type 1 diabetes, although they lack inpatient labeling. Food and Drug Administration began allowing inpatient use during the coronavirus disease 2019 (COVID-19) pandemic, with some accuracy data now available, primarily from adult hospitals. Pediatric inpatient data remain limited, particularly during diabetic ketoacidosis (DKA) admissions and for patients receiving intravenous (IV) insulin. Design and Methods: This retrospective chart review compared point-of-care glucose values to personal Dexcom G6 sensor data during pediatric hospitalizations. Accuracy was assessed using mean absolute relative difference (MARD), Clarke Error Grids, and the percentage of values within 15/20/30% if glucose value >100 mg/dL and 15/20/30 mg/dL if glucose value ≤100 mg/dL. Results: Matched paired glucose values (N = 612) from 36 patients (median age 14 years, 58.3% non-Hispanic White, 47.2% male) and 42 inpatient encounters were included in this subanalysis of DKA admissions. The MARDs for DKA and non-DKA admissions (N = 503) were 11.8% and 11.7%, with 97.6% and 98.6% of pairs falling within A and B zones of the Clarke Error Grid, respectively. Severe DKA admissions (pH <7.15 and/or bicarbonate <5 mmol/L) had a MARD of 8.9% compared to 14.3% for nonsevere DKA admissions. The MARD during administration of IV insulin (N = 266) was 13.4%. Conclusions: CGM accuracy is similar between DKA and non-DKA admissions and is maintained in severe DKA and during IV insulin administration, suggesting potential usability in pediatric hospitalizations. Further study on the feasibility of implementation of CGM in the hospital is needed.

2.
Diabetes Technol Ther ; 26(2): 119-124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194229

ABSTRACT

Objective: Continuous glucose monitors (CGMs) used for type 1 diabetes management are associated with lower hemoglobin A1c. CGMs are not approved for inpatient use, when close glucose monitoring and intensive insulin management are essential for optimal health. Accuracy data from adult hospitalizations have been published, but pediatric data are limited. Design and Methods: This retrospective review of Dexcom G6 data from youth with type 1 diabetes during hospitalization assessed CGMs and matched (within 5 min) point-of-care (POC) and laboratory glucose values. Glucose values >400 and <40 mg/dL were excluded due to sensor reporting capabilities. Standard methods for CGM accuracy were used including mean absolute relative difference (MARD), Clarke Error Grids, and percentage of CGM values within 15%/20%/30% if glucose value is >100 mg/dL and 15/20/30 mg/dL if value is ≤100 mg/dL. Results: A total of 1120 POC and 288 laboratory-matched pairs were collected from 83 unique patients (median age 12.0 years, 68.7% non-Hispanic white, 54.2% male) during 100 admissions. For POC values, overall, MARD was 11.8%, that on the medical floor was 13.5%, and that in the intensive care unit was 7.9%. The MARD for all laboratory values was 6.5%. In total, 98% of matched pairs were within Clarke Error Grid A and B zones. Conclusions: Findings from our pediatric population were similar to accuracy reported in hospitalized adults, indicating the potential role for CGM use during pediatric hospitalizations. Additional research is needed to assess accuracy under various conditions, including medication use, as well as development of safe hospital protocols for successful CGM implementation for routine inpatient care.


Subject(s)
Diabetes Mellitus, Type 1 , Adult , Adolescent , Humans , Male , Child , Female , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Blood Glucose , Blood Glucose Self-Monitoring/methods , Inpatients , Reproducibility of Results , Hospitalization
3.
Diabetes Res Clin Pract ; 207: 111087, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38181984

ABSTRACT

INTRODUCTION: Youth with type 1 diabetes (T1D) and parents experience reduced quality of life and sleep quality due to nocturnal monitoring, hypoglycemia fear, and diabetes-related disruptions. This study examined the sleep and quality of life impact of advanced technology. METHODS: Thirty-nine youth with T1D, aged 2-17 years, starting an advanced hybrid closed-loop (HCL) system and a parent participated in an observational study. Surveys, actigraphy, sleep diaries, and glycemic data (youth) were captured prior to HCL, at one week, 3 months, and 6 months. Outcomes were modeled using linear mixed effects models with random intercepts to account for within-subject correlation, with least-squares means at each timepoint compared to baseline. RESULTS: Parents and youth reported improvements in health-related quality of life and fear of hypoglycemia after HCL initiation. Concurrently, nocturnal glycemia improved. Actigraphy-derived sleep outcomes showed improved 6 month adolescent efficiency and 3 and 6 month parent wake after sleep onset. Additionally, parents reported improved subjective sleep quality and child sleep-related impairment at 3 months. CONCLUSIONS: With nocturnal glycemic improvements in youth using HCL technology, some aspects of parent and youth sleep and quality of life improved. This may reflect decreased parental monitoring and worry and highlights benefits for youth beyond glycemia.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adolescent , Child , Humans , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/psychology , Hypoglycemia/psychology , Hypoglycemic Agents , Insulin , Parents/psychology , Quality of Life , Sleep , Child, Preschool
4.
Pediatr Diabetes ; 22(4): 586-593, 2021 06.
Article in English | MEDLINE | ID: mdl-33502062

ABSTRACT

BACKGROUND: Control-IQ (Tandem Diabetes) is a hybrid closed-loop (HCL) system that users self-initiate after completing online training. Best practices for clinical follow-up are not known. Our quality improvement objective was to evaluate the usefulness of an educator-led follow-up program for new HCL users in a type 1 diabetes pediatric clinic. METHODS: We implemented an ''HCLCheck-in'' program, first determining when users started HCL, then having diabetes educators contact them for a follow-up call 2-weeks after start. Educators used a Clinical Tool to inform insulin dose and behavior recommendations, and used four benchmarks to determine need for further follow-up: ≥71% HCL use, ≥71% CGM use, ≥60% Time-in-Range (TIR, 70-180 mg/dL), <5% below 70 mg/dL. Family and educator satisfaction were surveyed. RESULTS: One-hundred-twenty-three youth [mean age 13.6 ± 3.7 y, 53.7% female, mean HbA1c 7.6 ± 1.4% (60 mmol/mol)] completed an HCLCheck-in call a median (IQR) of 18(15, 21) days post-HCL start. 74 users (60%) surpassed benchmarks with 94% HCL use and 71% TIR. Of the 49 who did not, 16 completed a second call, and improved median TIR 12.5% (p = 0.03). HCL users reported high satisfaction with the program overall [median 10 (9, 10) out of 10]. Educators spent a median of 45 (32,70) minutes per user and rated satisfaction with the program as 8 (7,9.5) and the Tool as 9 (9, 10). CONCLUSION: Our HCLCheck-in program received high satisfaction ratings and resulted in improved TIR for those initially not meeting benchmarks, suggesting users may benefit from early follow-up. Similar programs may be beneficial for other new technologies.


Subject(s)
Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Insulin Infusion Systems , Adolescent , Blood Glucose/metabolism , Child , Female , Follow-Up Studies , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Male , Patient Education as Topic , Patient Satisfaction , Program Evaluation , Quality Improvement
5.
J Diabetes Sci Technol ; 12(3): 599-607, 2018 05.
Article in English | MEDLINE | ID: mdl-29390915

ABSTRACT

BACKGROUND: As evidence emerges that artificial pancreas systems improve clinical outcomes for patients with type 1 diabetes, the burden of this disease will hopefully begin to be alleviated for many patients and caregivers. However, reliance on automated insulin delivery potentially means patients will be slower to act when devices stop functioning appropriately. One such scenario involves an insulin infusion site failure, where the insulin that is recorded as delivered fails to affect the patient's glucose as expected. Alerting patients to these events in real time would potentially reduce hyperglycemia and ketosis associated with infusion site failures. METHODS: An infusion site failure detection algorithm was deployed in a randomized crossover study with artificial pancreas and sensor-augmented pump arms in an outpatient setting. Each arm lasted two weeks. Nineteen participants wore infusion sets for up to 7 days. Clinicians contacted patients to confirm infusion site failures detected by the algorithm and instructed on set replacement if failure was confirmed. RESULTS: In real time and under zone model predictive control, the infusion site failure detection algorithm achieved a sensitivity of 88.0% (n = 25) while issuing only 0.22 false positives per day, compared with a sensitivity of 73.3% (n = 15) and 0.27 false positives per day in the SAP arm (as indicated by retrospective analysis). No association between intervention strategy and duration of infusion sets was observed ( P = .58). CONCLUSIONS: As patient burden is reduced by each generation of advanced diabetes technology, fault detection algorithms will help ensure that patients are alerted when they need to manually intervene. Clinical Trial Identifier: www.clinicaltrials.gov,NCT02773875.


Subject(s)
Algorithms , Diabetes Mellitus, Type 1/drug therapy , Pancreas, Artificial/adverse effects , Adult , Cross-Over Studies , Diabetic Ketoacidosis/etiology , Diabetic Ketoacidosis/prevention & control , Equipment Failure , Female , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Insulin Infusion Systems/adverse effects , Male , Middle Aged
7.
Diabetes Care ; 40(8): 1096-1102, 2017 08.
Article in English | MEDLINE | ID: mdl-28584075

ABSTRACT

OBJECTIVE: As artificial pancreas (AP) becomes standard of care, consideration of extended use of insulin infusion sets (IIS) and continuous glucose monitors (CGMs) becomes vital. We conducted an outpatient randomized crossover study to test the safety and efficacy of a zone model predictive control (zone-MPC)-based AP system versus sensor augmented pump (SAP) therapy in which IIS and CGM failures were provoked via extended wear to 7 and 21 days, respectively. RESEARCH DESIGN AND METHODS: A smartphone-based AP system was used by 19 adults (median age 23 years [IQR 10], mean 8.0 ± 1.7% HbA1c) over 2 weeks and compared with SAP therapy for 2 weeks in a crossover, unblinded outpatient study with remote monitoring in both study arms. RESULTS: AP improved percent time 70-140 mg/dL (48.1 vs. 39.2%; P = 0.016) and time 70-180 mg/dL (71.6 vs. 65.2%; P = 0.008) and decreased median glucose (141 vs. 153 mg/dL; P = 0.036) and glycemic variability (SD 52 vs. 55 mg/dL; P = 0.044) while decreasing percent time <70 mg/dL (1.3 vs. 2.7%; P = 0.001). AP also improved overnight control, as measured by mean glucose at 0600 h (140 vs. 158 mg/dL; P = 0.02). IIS failures (1.26 ± 1.44 vs. 0.78 ± 0.78 events; P = 0.13) and sensor failures (0.84 ± 0.6 vs. 1.1 ± 0.73 events; P = 0.25) were similar between AP and SAP arms. Higher percent time in closed loop was associated with better glycemic outcomes. CONCLUSIONS: Zone-MPC significantly and safely improved glycemic control in a home-use environment despite prolonged CGM and IIS wear. This project represents the first home-use AP study attempting to provoke and detect component failure while successfully maintaining safety and effective glucose control.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Pancreas, Artificial , Adolescent , Adult , Blood Glucose/metabolism , Cross-Over Studies , Female , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Male , Outpatients , Smartphone , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...