Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Pept Protein Res ; 35(2): 141-6, 1990 Feb.
Article in English | MEDLINE | ID: mdl-2323887

ABSTRACT

An automated multiple peptide synthesis method to synthesize, cleave, and purify several peptides simultaneously in a single batch has been developed. The technique is based on the synthesis of multiple peptides on a single solid phase support and is easily adapted to manual or to automated methods. The approach relies on coupling of amino acid mixtures to the resin and it has been found that DCC/HOBt gives the best coupling performance. Fast Atom Bombardment Mass Spectrometry (FAB-MS) was used to rapidly and efficiently identify the peptides in each synthetic mixture which significantly assisted the purification process by HPLC. The method has been successfully applied to the synthesis of magainin 2 and angiotensinogen peptides.


Subject(s)
Antimicrobial Cationic Peptides , Peptides , Xenopus Proteins , Amino Acid Sequence , Angiotensinogen , Animals , Chemical Phenomena , Chemistry , Magainins , Molecular Sequence Data , Xenopus laevis
3.
J Biol Chem ; 263(4): 1784-90, 1988 Feb 05.
Article in English | MEDLINE | ID: mdl-3123478

ABSTRACT

A variety of eukaryotic viral and cellular proteins possesses an NH2-terminal N-myristoylglycine residue important for their biological functions. Recent studies of the primary structural requirements for peptide substrates of the enzyme responsible for this modification in yeast demonstrated that residues 1, 2, and 5 play a critical role in enzyme: ligand interactions (Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jackson-Machelski, E., Glaser, L., and Gordon J. I. (1987b) Proc. Natl. Acad. Sci. U. S. A. 84, 2708-2812). This was determined by examining as substrates a series of synthetic peptides whose sequences were systematically altered from a "parental" peptide derived from the known N-myristoylprotein bovine heart cyclic AMP-dependent protein kinase (A kinase) catalytic subunit. We have now extended these studies in order to examine structure/activity relationships in the COOH-terminal regions of octapeptide substrates of yeast N-myristoyltransferase (NMT). The interaction between yeast NMT and the side chain of residue 5 in peptide ligands is apparently sterically constrained, since Thr5 is unable to promote the very high affinity binding observed with a Ser5 substitution. A substrate hexapeptide core has been defined which contains much of the information necessary for recognition by this lower eukaryotic NMT. Addition of COOH-terminal basic residues to this hexapeptide enhances peptide binding, while COOH-terminal acidic residues destabilize NMT: ligand interactions. Based on the results obtained from our in vitro studies of over 80 synthetic peptides and yeast NMT, we have identified a number of potential N-myristoylproteins from searches of available protein databases. These include hepatitis B virus pre-S1, human SYN-kinase, rodent Gi alpha, and bovine transducin-alpha. Peptides corresponding to the NH2-terminal sequences of these proteins and several known N-myristoylproteins were assayed using yeast NMT as well as partially purified rat liver NMT. While a number of the synthetic peptides exhibited similar catalytic properties with the yeast and mammalian enzymes, surprisingly, the SYN-kinase, Gi alpha, and transducin-alpha peptides were N-myristoylated by rat NMT but not by yeast NMT. This suggests that either multiple NMT activities exist in rat liver or the yeast and rodent enzymes have similar but distinct peptide substrate specificities.


Subject(s)
Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Liver/enzymology , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Animals , Kinetics , Male , Rats , Rats, Inbred Strains , Substrate Specificity
4.
Proc Natl Acad Sci U S A ; 84(9): 2708-12, 1987 May.
Article in English | MEDLINE | ID: mdl-3106975

ABSTRACT

Myristoyl CoA:protein N-myristoyltransferase (NMT) catalyzes the addition of myristic acid to the amino-terminal glycine residues of a number of eukaryotic proteins. Recently, we developed a cell-free system for analyzing NMT activity and have begun to characterize the substrate specificity of this enzyme by using a series of synthetic peptides. We have now purified NMT from Saccharomyces cerevisiae to apparent homogeneity. The native enzyme is a 55-kDa protein, exhibits no requirement for divalent cation, and appears to contain a histidine residue critical for enzyme activity. A total of 42 synthetic peptides have been used to define structure/activity relationships in NMT substrates. An amino-terminal glycine is required for acylation; substitution with glycine analogues produces peptides that are inactive as substrates or inhibitors of NMT. A broad spectrum of amino acids is permitted at positions 3 and 4, while strict amino acid requirements are exhibited at position 5. Replacement of Ala5 in the peptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg with Asp ablates the peptide's myristoyl-accepting activity. A serine at this position results in a decrease by a factor of approximately equal to 500 in the apparent Km in the context of three different sequences. Penta- and hexa-peptides are substrates, but with decreased affinity. These studies establish that structural information important for NMT-ligand interaction exists beyond the first two amino acids in peptide substrates and that the side chains of residue 5 play a critical role in the binding of substrates to this enzyme.


Subject(s)
Acyltransferases/isolation & purification , Saccharomyces cerevisiae/enzymology , Acyltransferases/metabolism , Amino Acid Sequence , Kinetics , Molecular Weight , Substrate Specificity
5.
J Biol Chem ; 262(3): 1030-6, 1987 Jan 25.
Article in English | MEDLINE | ID: mdl-3100524

ABSTRACT

Using synthetic octapeptides, we examined the amino-terminal sequence requirements for substrate recognition by myristoyl-CoA:protein N-myristoyl transferase (NMT). NMT is absolutely specific for peptides with amino-terminal Gly residues. Peptides with Asn, Gln, Ser, Val, or Leu penultimate to the amino-terminal Gly were substrates, whereas peptides with Asp, D-Asn, Phe, or Tyr at this position were not myristoylated. Peptides with aromatic residues at this position competitively inhibited myristoylation of substrates, introducing the possibility of developing specific in vivo inhibitors of NMT. Peptides having sequences which correspond to those of known N-myristoyl proteins, including p60src, appear to be recognized by a single enzyme, and yeast and murine NMT have identical substrate specificities. The catalytic selectivity of NMT for myristoyl transfer accounts for the remarkable acyl chain specificity of this enzyme.


Subject(s)
Acyltransferases/metabolism , Myristic Acids/metabolism , Oligopeptides/metabolism , Peptide Fragments/metabolism , Saccharomyces cerevisiae/enzymology , Acyl Coenzyme A/metabolism , Acyltransferases/antagonists & inhibitors , Amino Acid Sequence , Animals , Calmodulin-Binding Proteins/metabolism , Cell Line , Kinetics , Mice , Muscles/enzymology , Myristic Acid , Oligopeptides/pharmacology , Oncogene Protein pp60(v-src) , Retroviridae Proteins/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...