Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(57): 34474-34485, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514429

ABSTRACT

SAPO-34 catalysts were synthesized through the seeding approach under different seed conditions. The different seed synthesis times (6 h, 12 h, and 24 h) and three types of seeds were evaluated: the dried seed, the calcined seed, and the mother liquor from an unseeded synthesis, called the solution seed. Pure SAPO-34 was obtained using 12 h and 24 h solution seeds, in which a 40% reduction of template consumption was achieved simultaneously. All seeding induced samples represented higher catalytic performance in the MTO process than conventional SAPO-34 due to the smaller crystallite/particle sizes and larger external surface areas and mesopore volume. Furthermore, the changes in the acidity of samples affect their performance. The maximum olefin selectivity under industrial feed conditions (72 wt% methanol in water) was 91.79% for the sample prepared from the 12 h solution seed, which was 14.43% higher than the unseeded sample. Although this sample did not have the longest lifetime, it showed a 330 min lifespan, which was at least twice more than that of the conventional one (150 min). The sample prepared from the 6 h solution seed showed the longest lifetime of more than 500 min among all catalysts, although it was contaminated with a little SAPO-5.

2.
J Adv Res ; 7(3): 435-44, 2016 May.
Article in English | MEDLINE | ID: mdl-27222748

ABSTRACT

An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.

SELECTION OF CITATIONS
SEARCH DETAIL
...