Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 220(Pt 13): 2476-2485, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28450409

ABSTRACT

In view-based navigation, animals acquire views of the landscape from various locations and then compare the learned views with current views in order to orient in certain directions or move toward certain destinations. One landscape feature of great potential usefulness in view-based navigation is the skyline, the silhouette of terrestrial objects against the sky, as it is distant, relatively stable and easy to detect. The skyline has been shown to be important in the view-based navigation of ants, but no flying insect has yet been shown definitively to use the skyline in this way. Here, we show that honeybees do indeed orient using the skyline. A feeder was surrounded with an artificial replica of the natural skyline there, and the bees' departures toward the nest were recorded from above with a video camera under overcast skies (to eliminate celestial cues). When the artificial skyline was rotated, the bees' departures were rotated correspondingly, showing that the bees oriented by the artificial skyline alone. We discuss these findings in the context of the likely importance of the skyline in long-range homing in bees, the likely importance of altitude in using the skyline, the likely role of ultraviolet light in detecting the skyline, and what we know about the bees' ability to resolve skyline features.


Subject(s)
Bees/physiology , Homing Behavior , Visual Perception , Animals , Cues , Orientation, Spatial
2.
J Exp Biol ; 216(Pt 20): 3767-71, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23868835

ABSTRACT

Honeybees learn the spatial relationship between the sun's pattern of movement and the landscape immediately surrounding their nest, which allows bees to locate the sun under overcast skies by reference to the landscape alone. Surprisingly, when bees have been transplanted from their natal landscape to a rotated twin landscape - such as from one treeline to a similar but differently oriented treeline - they fail to learn the relationship between the sun and the second landscape. This raises the question of whether bees can ever learn the relationship between the sun's pattern of movement and a landscape other than their natal one. Here we confirm, with new and necessary controls, that bees can indeed learn the relationship between the sun's pattern of movement and a second (that is, non-natal) landscape, if the second landscape is panoramically different from the bees' natal site. We transplanted bees from their natal site to a panoramically different second site and, 3 days later, tested the bees' knowledge of the relationship between the sun and the second landscape. The test involved observing the bees' communicative dances under overcast skies at a third site that was a rotated twin of the second. These bees oriented their dances using a memory of the sun's course in relation to the second landscape, indicating that they had learned this relationship. Meanwhile, control bees transplanted directly from the natal site to the third site, skipping the second, danced differently, confirming the importance of the experimental bees' experience at the second site.


Subject(s)
Bees/physiology , Learning/physiology , Solar System , Spatial Behavior/physiology , Animals , Orientation/physiology , Photography
3.
J Exp Biol ; 216(Pt 11): 2129-39, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23430992

ABSTRACT

Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.


Subject(s)
Bees/physiology , Orientation , Animal Communication , Animals , Cues , Magnetic Fields , Sunlight
4.
J Exp Biol ; 211(Pt 23): 3737-43, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19011214

ABSTRACT

Many species learn the sun's daily pattern of azimuthal movement (the solar ephemeris function) for use in sun-compass orientation. In honeybees, this learning is accomplished with much innate guidance and yields stubborn, imprinting-like retention of certain aspects of the stored information. One such case involves the failure of transplanted bees to update their memories of the relationship between the solar ephemeris and a new landscape, even after many days' experience at the new site. In the present study, I ask whether the bees in previous transplantation experiments failed to update their memories of the relationship between the sun and landscape because the source and recipient landscapes were (rotated) panoramic twins of each other, each dominated by a conspicuous treeline. To test this hypothesis, I transplanted bees from their natal site at the bottom of a valley to a panoramically different, treelined site and later tested the bees' knowledge of the sun's course in relation to the treeline. The test involved observing the bees' communicative dances under overcast skies at a second treeline that was a mirror image of the first. The cloudy-day dances show that the bees had indeed learned the relationship between sun's pattern of movement and the (panoramically novel) treelined site, indicating that the bees' memory of the relationship between the ephemeris function and the landscape is not incapable of revision as the earlier results had suggested. I discuss these results in the context of a brief summary of our current understanding of solar ephemeris learning in bees.


Subject(s)
Bees/physiology , Homing Behavior , Spatial Behavior , Sunlight , Animal Communication , Animals , Learning , Visual Perception
5.
J Exp Biol ; 211(Pt 23): 3729-36, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19011213

ABSTRACT

Honeybees connect the sun's daily pattern of azimuthal movement to some aspect of the landscape around their nests. In the present study, we ask what aspect of the landscape is used in this context--the entire landscape panorama or only sectors seen along familiar flight routes. Previous studies of the solar ephemeris memory in bees have generally used bees that had experience flying a specific route, usually along a treeline, to a feeder. When such bees were moved to a differently oriented treeline on overcast days, the bees oriented their communicative dances as if they were still at the first treeline, based on a memory of the sun's course in relation to some aspect of the site, possibly the familiar route along the treeline or possibly the entire landscape or skyline panorama. Our results show that bees lacking specific flight-route training can nonetheless recall the sun's compass bearing relative to novel flight routes in their natal landscape. Specifically, we moved a hive from one landscape to a differently oriented twin landscape, and only after transplantation under overcast skies did we move a feeder away from the hive. These bees nonetheless danced accurately by memory of the sun's course in relation to their natal landscape. The bees' knowledge of the relationship between the sun and landscape, therefore, is not limited to familiar flight routes and so may encompass, at least functionally, the entire panorama. Further evidence suggests that the skyline in particular may be the bees' preferred reference in this context.


Subject(s)
Bees/physiology , Homing Behavior , Spatial Behavior , Sunlight , Animal Communication , Animals , Visual Perception
6.
J Exp Biol ; 208(Pt 21): 4049-61, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16244164

ABSTRACT

Spatial orientation in the social insects offers several examples of specialized learning mechanisms that underlie complex learning tasks. Here we study one of these systems: the processes by which honey bees update, or fail to update, their memories of the sun's daily pattern of movement (the solar ephemeris function) in relation to the landscape. Specifically, we ask whether bees that have initially learned the solar ephemeris function relative to a conspicuous treeline at their natal site can later realign the ephemeris to a differently oriented treeline. We first confirm and clarify an earlier finding that bees transplanted passively (by being carried) do not re-learn the solar ephemeris in relation to the new treeline. When they cannot detect the sun directly, as on overcast days, these transplanted bees use a solar ephemeris function appropriate for their natal site, despite days or weeks of experience at the new site. We then ask whether bees put through a swarming process as they are transplanted are induced to re-learn the solar ephemeris function at the new site, as swarming is a natural process wherein bees transplant themselves. Most of the swarmed bees failed to re-learn, even though they did extensive learning flights (in comparison with those of non-swarmed controls) as they first emerged from the hive at the new site. We hypothesize that the bees' representation of the solar ephemeris function is stored in an encapsulated cognitive module in which the ephemeris is inextricably linked to the reference landscape in which it was learned.


Subject(s)
Animal Communication , Bees/physiology , Cues , Learning/physiology , Orientation/physiology , Social Behavior , Spatial Behavior/physiology , Animals , Solar System
SELECTION OF CITATIONS
SEARCH DETAIL
...