Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 563(7732): E26, 2018 11.
Article in English | MEDLINE | ID: mdl-30275480

ABSTRACT

In this Letter, errors in Supplementary Table 1 have been corrected.

2.
Nature ; 560(7720): 639-643, 2018 08.
Article in English | MEDLINE | ID: mdl-30089903

ABSTRACT

Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.


Subject(s)
Earth, Planet , Ecosystem , Environmental Monitoring , Human Activities/statistics & numerical data , Agriculture/statistics & numerical data , Agriculture/trends , Climate Change/statistics & numerical data , Forestry/statistics & numerical data , Forestry/trends , Human Activities/trends , Satellite Imagery , Trees/growth & development
3.
Sci Adv ; 1(2): e1500052, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26601154

ABSTRACT

We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

4.
PLoS One ; 10(5): e0126754, 2015.
Article in English | MEDLINE | ID: mdl-25951328

ABSTRACT

Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.


Subject(s)
Atmosphere/analysis , Carbon/analysis , Climate Change , Conservation of Natural Resources , Biomass , Bolivia , Brazil , Colombia , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Forests , Peru , Tropical Climate
5.
Geophys Res Lett ; 42(9): 3495-3501, 2015 May 16.
Article in English | MEDLINE | ID: mdl-27656010

ABSTRACT

Using a consistent, 20 year series of high- (30 m) resolution, satellite-based maps of forest cover, we estimate forest area and its changes from 1990 to 2010 in 34 tropical countries that account for the majority of the global area of humid tropical forests. Our estimates indicate a 62% acceleration in net deforestation in the humid tropics from the 1990s to the 2000s, contradicting a 25% reduction reported by the United Nations Food and Agriculture Organization Forest Resource Assessment. Net loss of forest cover peaked from 2000 to 2005. Gross gains accelerated slowly and uniformly between 1990-2000, 2000-2005, and 2005-2010. However, the gains were overwhelmed by gross losses, which peaked from 2000 to 2005 and decelerated afterward. The acceleration of humid tropical deforestation we report contradicts the assertion that losses decelerated from the 1990s to the 2000s.

6.
Proc Natl Acad Sci U S A ; 105(27): 9439-44, 2008 Jul 08.
Article in English | MEDLINE | ID: mdl-18591652

ABSTRACT

Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.


Subject(s)
Humidity , Satellite Communications/instrumentation , Trees , Tropical Climate , Geography
SELECTION OF CITATIONS
SEARCH DETAIL
...