Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 10(6)2019 12 03.
Article in English | MEDLINE | ID: mdl-31796544

ABSTRACT

The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae, where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. We further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations.IMPORTANCEVibrio cholerae, the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae, which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments.


Subject(s)
Adhesins, Bacterial/genetics , Vibrio cholerae/genetics , Bacterial Proteins/genetics , Biofilms/growth & development , Cyclic GMP/analogs & derivatives , Cyclic GMP/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Signal Transduction/genetics
2.
mBio ; 9(2)2018 03 27.
Article in English | MEDLINE | ID: mdl-29588402

ABSTRACT

There is a growing appreciation for the impact that bacteria have on higher organisms. Plant roots often harbor beneficial microbes, such as the Gram-positive rhizobacterium Bacillus subtilis, that influence their growth and susceptibility to disease. The ability to form surface-attached microbial communities called biofilms is crucial for the ability of B. subtilis to adhere to and protect plant roots. In this study, strains harboring deletions of the B. subtilis genes known to synthesize and degrade the second messenger cyclic di-adenylate monophosphate (c-di-AMP) were examined for their involvement in biofilm formation and plant attachment. We found that intracellular production of c-di-AMP impacts colony biofilm architecture, biofilm gene expression, and plant attachment in B. subtilis We also show that B. subtilis secretes c-di-AMP and that putative c-di-AMP transporters impact biofilm formation and plant root colonization. Taken together, our data describe a new role for c-di-AMP as a chemical signal that affects important cellular processes in the environmentally and agriculturally important soil bacterium B. subtilis These results suggest that the "intracellular" signaling molecule c-di-AMP may also play a previously unappreciated role in interbacterial cell-cell communication within plant microbiomes.IMPORTANCE Plants harbor bacterial communities on their roots that can significantly impact their growth and pathogen resistance. In most cases, however, the signals that mediate host-microbe and microbe-microbe interactions within these communities are unknown. A detailed understanding of these interaction mechanisms could facilitate the manipulation of these communities for agricultural or environmental purposes. Bacillus subtilis is a plant-growth-promoting bacterium that adheres to roots by forming biofilms. We therefore began by exploring signals that might impact its biofilm formation. We found that B. subtilis secretes c-di-AMP and that the ability to produce, degrade, or transport cyclic di-adenylate monophosphate (c-di-AMP; a common bacterial second messenger) affects B. subtilis biofilm gene expression and plant attachment. To our knowledge, this is the first demonstration of c-di-AMP impacting a mutualist host-microbe association and suggests that c-di-AMP may function as a previously unappreciated extracellular signal able to mediate interactions within plant microbiomes.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Bacillus subtilis/metabolism , Bacillus subtilis/physiology , Biofilms/growth & development , Cyclic AMP/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology
3.
Trends Microbiol ; 25(12): 1016-1026, 2017 12.
Article in English | MEDLINE | ID: mdl-28688575

ABSTRACT

Cell-cell communication enables bacteria to coordinate their behavior through the production, recognition, and response to chemical signals produced by their microbial neighbors. An important example of coordinated behavior in bacteria is biofilm formation, where individual cells organize into highly complex, matrix-encased communities that differentiate into distinct cell types and divide labor among individual cells. Bacteria rely on environmental cues to influence biofilm development, including chemical cues produced by other microbes. A multitude of recent studies have demonstrated that natural-product antibiotics at subinhibitory concentrations can impact biofilm formation in neighboring microbes, supporting the hypothesis that these compounds may have evolved as signaling molecules that mediate cell-cell interactions. In this review we discuss the role of antibiotics in modulating biofilm formation and interspecies communication in bacteria.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Biofilms/growth & development , Biological Products/metabolism , Quorum Sensing , Signal Transduction
4.
Genome Announc ; 4(5)2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27795273

ABSTRACT

Bacillus luciferensis is a Gram-positive, facultatively anaerobic, motile rod. Here, we report the first draft genome sequence, to our knowledge, of a B. luciferensis strain (CH01), which will provide useful information for Bacillus and soil bacteria research.

5.
Appl Environ Microbiol ; 82(14): 4441-52, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27208110

ABSTRACT

UNLABELLED: The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae IMPORTANCE: Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to fluctuations in temperature, which results in changes to biofilm formation and type VI secretion system activation. These processes in turn impact environmental survival and the virulence potential of this pathogen.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Cold Temperature , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Type VI Secretion Systems/metabolism , Vibrio cholerae/radiation effects , Zooplankton/growth & development , Animals , Bacterial Adhesion , Daphnia/microbiology , Gene Expression Profiling , Stress, Physiological , Survival Analysis , Vibrio cholerae/physiology , Virulence
6.
PLoS One ; 11(3): e0149603, 2016.
Article in English | MEDLINE | ID: mdl-26992172

ABSTRACT

Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.


Subject(s)
Biofilms , Gram-Negative Bacteria/physiology , Animals , Fishes/metabolism
7.
J Bacteriol ; 198(6): 973-85, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26755629

ABSTRACT

UNLABELLED: The presence of the Lon protease in all three domains of life hints at its biological importance. The prokaryotic Lon protease is responsible not only for degrading abnormal proteins but also for carrying out the proteolytic regulation of specific protein targets. Posttranslational regulation by Lon is known to affect a variety of physiological traits in many bacteria, including biofilm formation, motility, and virulence. Here, we identify the regulatory roles of LonA in the human pathogen Vibrio cholerae. We determined that the absence of LonA adversely affects biofilm formation, increases swimming motility, and influences intracellular levels of cyclic diguanylate. Whole-genome expression analysis revealed that the message abundance of genes involved in biofilm formation was decreased but that the message abundances of those involved in virulence and the type VI secretion system were increased in a lonA mutant compared to the wild type. We further demonstrated that a lonA mutant displays an increase in type VI secretion system activity and is markedly defective in colonization of the infant mouse. These findings suggest that LonA plays a critical role in the environmental survival and virulence of V. cholerae. IMPORTANCE: Bacteria utilize intracellular proteases to degrade damaged proteins and adapt to changing environments. The Lon protease has been shown to be important for environmental adaptation and plays a crucial role in regulating the motility, biofilm formation, and virulence of numerous plant and animal pathogens. We find that LonA of the human pathogen V. cholerae is in line with this trend, as the deletion of LonA leads to hypermotility and defects in both biofilm formation and colonization of the infant mouse. In addition, we show that LonA regulates levels of cyclic diguanylate and the type VI secretion system. Our observations add to the known regulatory repertoire of the Lon protease and the current understanding of V. cholerae physiology.


Subject(s)
Biofilms/growth & development , Locomotion , Protease La/metabolism , Type VI Secretion Systems/metabolism , Vibrio cholerae/enzymology , Vibrio cholerae/physiology , Animals , Gastrointestinal Tract/microbiology , Gene Deletion , Gene Expression Profiling , Mice , Protease La/genetics , Vibrio cholerae/genetics , Virulence
8.
Mol Microbiol ; 98(1): 175-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26135212

ABSTRACT

CdiB/CdiA proteins mediate inter-bacterial competition in a process termed contact-dependent growth inhibition (CDI). Filamentous CdiA exoproteins extend from CDI(+) cells and bind specific receptors to deliver toxins into susceptible target bacteria. CDI has also been implicated in auto-aggregation and biofilm formation in several species, but the contribution of CdiA-receptor interactions to these multi-cellular behaviors has not been examined. Using Escherichia coli isolate EC93 as a model, we show that cdiA and bamA receptor mutants are defective in biofilm formation, suggesting a prominent role for CdiA-BamA mediated cell-cell adhesion. However, CdiA also promotes auto-aggregation in a BamA-independent manner, indicating that the exoprotein possesses an additional adhesin activity. Cells must express CdiA in order to participate in BamA-independent aggregates, suggesting that adhesion could be mediated by homotypic CdiA-CdiA interactions. The BamA-dependent and BamA-independent interaction domains map to distinct regions within the CdiA filament. Thus, CdiA orchestrates a collective behavior that is independent of its growth-inhibition activity. This adhesion should enable 'greenbeard' discrimination, in which genetically unrelated individuals cooperate with one another based on a single shared trait. This kind-selective social behavior could provide immediate fitness benefits to bacteria that acquire the systems through horizontal gene transfer.


Subject(s)
Bacterial Adhesion , Bacterial Outer Membrane Proteins/metabolism , Biofilms/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Contact Inhibition , Escherichia coli/genetics , Gene Transfer, Horizontal , Membrane Glycoproteins/metabolism , Mutation
9.
Environ Microbiol ; 17(11): 4290-305, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25684220

ABSTRACT

Biofilm formation is crucial to the environmental survival and transmission of Vibrio cholerae, the facultative human pathogen responsible for the disease cholera. During its infectious cycle, V. cholerae experiences fluctuations in temperature within the aquatic environment and during the transition between human host and aquatic reservoirs. In this study, we report that biofilm formation is induced at low temperatures through increased levels of the signalling molecule, cyclic diguanylate (c-di-GMP). Strains harbouring in frame deletions of all V. cholerae genes that are predicted to encode diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) were screened for their involvement in low-temperature-induced biofilm formation and Vibrio polysaccharide gene expression. Of the 52 mutants tested, deletions of six DGCs and three PDEs were found to affect these phenotypes at low temperatures. Unlike wild type, a strain lacking all six DGCs did not exhibit a low-temperature-dependent increase in c-di-GMP, indicating that these DGCs are required for temperature modulation of c-di-GMP levels. We also show that temperature modulates c-di-GMP levels in a similar fashion in the Gram-negative pathogen Pseudomonas aeruginosa but not in the Gram-positive pathogen Listeria monocytogenes. This study uncovers the role of temperature in environmental regulation of biofilm formation and c-di-GMP signalling.


Subject(s)
Biofilms/growth & development , Cholera/transmission , Cyclic GMP/analogs & derivatives , Temperature , Vibrio cholerae/growth & development , Cholera/microbiology , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Humans , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphorus-Oxygen Lyases/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/metabolism , Sequence Deletion/genetics , Signal Transduction/physiology , Vibrio cholerae/genetics , Vibrio cholerae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...