Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Commun ; 15(1): 3924, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724518

ABSTRACT

An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.


Subject(s)
Antibodies, Neutralizing , HIV Antibodies , HIV-1 , env Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , Humans , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , AIDS Vaccines/immunology , Neutralization Tests , HEK293 Cells , Consensus Sequence , HIV Infections/virology , HIV Infections/immunology , Protein Binding , Epitopes/immunology
2.
Nat Commun ; 15(1): 200, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172512

ABSTRACT

The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.


Subject(s)
Nanoparticles , Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Antibodies, Neutralizing , Macaca mulatta , Vaccination , Antibodies, Viral , Antibodies, Monoclonal , COVID-19 Vaccines , Ferritins , Spike Glycoprotein, Coronavirus/genetics
3.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38157856

ABSTRACT

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Binding Sites , Epitopes
4.
RSC Adv ; 13(41): 28873-28884, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37790106

ABSTRACT

Minerals play a critical role in the chemistry occurring along the interface of different environmental systems, including the atmosphere/geosphere and hydrosphere/geosphere. In the past few decades, vibrational spectroscopy has been used as a probe for studying interfacial geochemistry. Here, we compare four different vibrational methods for probing physical and chemical features across different mineral samples and length scales, from the macroscale to nanoscale. These methods include Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR), Optical Photothermal Infrared (O-PTIR), Atomic Force Microscopy-Infrared (AFM-IR) and micro-Raman spectroscopy. The emergence of these micro-spectroscopic probes has offered new insights into heterogeneities within geochemical thin films and particles. These developments represent an important step forward for analyzing environmental interfaces and thin films as often these are assumed to be physically and chemically homogeneous. By comparing and integrating data across these measurement techniques, new insights into sample differences and heterogeneities can be gained. For example, interrogation of the various mineral samples at smaller length scales is shown to be particularly informative in highlighting unique chemical environments, including for chemically complex, multicomponent samples such as Arizona Test Dust (AZTD), as well as differences due to crystal orientation.

5.
J Virol ; 97(2): e0163522, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749076

ABSTRACT

Understanding the dynamics of early immune responses to HIV-1 infection, including the evolution of initial neutralizing and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, will inform HIV vaccine design. In this study, we assess the development of autologous neutralizing antibodies (ANAbs) against founder envelopes (Envs) from 18 participants with HIV-1 CRF01_AE acute infection. The timing of ANAb development directly associated with the magnitude of the longitudinal ANAb response. Participants that developed ANAbs within 6 months of infection had significantly higher ANAb responses at 1 year (50% inhibitory concentration [IC50] geometric mean titer [GMT] = 2,010 versus 184; P = 0.001) and 2 years (GMT = 3,479 versus 340; P = 0.015), compared to participants that developed ANAb responses after 6 months. Participants with later development of ANAb tended to develop an earlier, potent heterologous tier 1 (92TH023) neutralizing antibody (NAb) response (P = 0.049). CRF01_AE founder Env V1V2 loop lengths correlated indirectly with the timing (P = 0.002, r = -0.675) and directly with magnitude (P = 0.005, r = 0.635) of ANAb responses; Envs with longer V1V2 loop lengths elicited earlier and more potent ANAb responses. While ANAb responses did not associate with viral load, the viral load set point correlated directly with neutralization of the heterologous 92TH023 strain (P = 0.007, r = 0.638). In contrast, a striking inverse correlation was observed between viral load set point and peak ADCC against heterologous 92TH023 Env strain (P = 0.0005, r = -0.738). These data indicate that specific antibody functions can be differentially related to viral load set point and may affect HIV-1 pathogenesis. Exploiting Env properties, such as V1V2 length, could facilitate development of subtype-specific vaccines that elicit more effective immune responses and improved protection. IMPORTANCE Development of an effective HIV-1 vaccine will be facilitated by better understanding the dynamics between the founder virus and the early humoral responses. Variations between subtypes may influence the evolution of immune responses and should be considered as we strive to understand these dynamics. In this study, autologous founder envelope neutralization and heterologous functional humoral responses were evaluated after acute infection by HIV-1 CRF01_AE, a subtype that has not been thoroughly characterized. The evolution of these humoral responses was assessed in relation to envelope characteristics, magnitude of elicited immune responses, and viral load. Understanding immune parameters in natural infection will improve our understanding of protective responses and aid in the development of immunogens that elicit protective functional antibodies. Advancing our knowledge of correlates of positive clinical outcomes should lead to the design of more efficacious vaccines.


Subject(s)
Antibodies, Neutralizing , Antibody Formation , HIV Antibodies , HIV Infections , env Gene Products, Human Immunodeficiency Virus , Humans , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , HIV Infections/immunology , HIV-1
6.
PLoS Pathog ; 18(3): e1010369, 2022 03.
Article in English | MEDLINE | ID: mdl-35303045

ABSTRACT

Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth.


Subject(s)
HIV-1 , Antibodies, Neutralizing , Epitopes , HIV Antibodies , HIV-1/genetics , Humans , Prospective Studies , env Gene Products, Human Immunodeficiency Virus/genetics
7.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Article in English | MEDLINE | ID: mdl-34716452

ABSTRACT

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/genetics , COVID-19/metabolism , COVID-19/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
8.
STAR Protoc ; 2(3): 100771, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34471908

ABSTRACT

Protocols for efficient capture of antigen-specific B cells (ASBCs) are useful for understanding pathogen-specific B-cell responses during natural infection or vaccination. Fluorescently labeled tetramerized probes are classically used to capture ASBCs, but many occlude valuable epitopes available for B-cell receptor binding. Here, we describe a bead assay to confirm ASBC receptor accessibility on probes and a sequential staining process to capture HIV gp140-specific B cells from human peripheral blood mononuclear cells. For complete details on the use and execution of this protocol, please refer to Townsley et al. (2021).


Subject(s)
B-Lymphocytes/immunology , Flow Cytometry/methods , Staining and Labeling/methods , env Gene Products, Human Immunodeficiency Virus , Humans , Leukocytes, Mononuclear/immunology , Molecular Probes , Receptors, Antigen, B-Cell/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry
9.
J Virol ; 95(17): e0079721, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34160251

ABSTRACT

Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield's reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/epidemiology , HIV-1/immunology , Immune Evasion/immunology , Polysaccharides/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Africa, Eastern/epidemiology , Antibodies, Neutralizing/blood , Cohort Studies , Epitopes , Glycosylation , HIV Antibodies/blood , HIV Infections/immunology , HIV Infections/virology , Humans , Thailand/epidemiology
10.
Cell Host Microbe ; 29(4): 564-578.e9, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33662277

ABSTRACT

Determining which immunological mechanisms contribute to the development of broad neutralizing antibodies (bNAbs) during HIV-1 infection is a major goal to inform vaccine design. Using samples from a longitudinal HIV-1 acute infection cohort, we found key B cell determinants within the first 14-43 days of viremia that predict the development of bNAbs years later. Individuals who develop neutralization breadth had significantly higher B cell engagement with the autologous founder HIV envelope (Env) within 1 month of initial viremia. A higher frequency of founder-Env-specific naive B cells was associated with increased B cell activation and differentiation and predictive of bNAb development. These data demonstrate that the initial B cell interaction with the founder HIV Env is important for the development of broadly neutralizing antibodies and provide evidence that events within HIV acute infection lead to downstream functional outcomes.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Viral Envelope/immunology , Cell Line , Epitopes/immunology , HIV Infections/virology , Humans , Viremia , env Gene Products, Human Immunodeficiency Virus/immunology
11.
Nat Med ; 26(2): 228-235, 2020 02.
Article in English | MEDLINE | ID: mdl-32015557

ABSTRACT

Zika virus (ZIKV) has caused significant disease, with widespread cases of neurological pathology and congenital neurologic defects. Rapid vaccine development has led to a number of candidates capable of eliciting potent ZIKV-neutralizing antibodies (reviewed in refs. 1-3). Despite advances in vaccine development, it remains unclear how ZIKV vaccination affects immune responses in humans with prior flavivirus immunity. Here we show that a single-dose immunization of ZIKV purified inactivated vaccine (ZPIV)4-7 in a dengue virus (DENV)-experienced human elicited potent cross-neutralizing antibodies to both ZIKV and DENV. Using a unique ZIKV virion-based sorting strategy, we isolated and characterized multiple antibodies, including one termed MZ4, which targets a novel site of vulnerability centered on the Envelope (E) domain I/III linker region and protects mice from viremia and viral dissemination following ZIKV or DENV-2 challenge. These data demonstrate that Zika vaccination in a DENV-experienced individual can boost pre-existing flavivirus immunity and elicit protective responses against both ZIKV and DENV. ZPIV vaccination in Puerto Rican individuals with prior flavivirus experience yielded similar cross-neutralizing potency after a single vaccination, highlighting the potential benefit of ZIKV vaccination in flavivirus-endemic areas.


Subject(s)
Dengue/immunology , Tissue Donors , Viral Vaccines/therapeutic use , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Cross Reactions , Dengue Virus , Epitope Mapping , Female , Flavivirus/metabolism , Humans , Immunoglobulin G/chemistry , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Protein Domains , Vaccination , Vaccines, Inactivated/therapeutic use , Vero Cells , Viremia , Zika Virus
12.
AIDS ; 32(5): 555-563, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29239895

ABSTRACT

OBJECTIVE: Nonhuman primates (NHPs) are the only animal model that can be used to evaluate protection efficacy of HIV-1 envelope vaccines. However, whether broadly neutralizing antibodies (bnAbs) can be elicited in NHPs infected with simian/human immunodeficiency virus (SHIV) has not been fully understood. The objective of this study is to investigate whether broad neutralization activities were developed in SHIV-infected macaques after long-term infection as in humans. DESIGN: Neutralization breadth and specificities in plasmas from SHIV-infected macaques were determined by analyzing a panel of tier 2 viruses and their mutants. METHODS: Forty-four Chinese macaques infected with SHIV1157ipd3N4, SHIVSF162P3 or SHIVCHN19P4 were followed for 54-321 weeks. Archived plasmas from 19 macaques were used to determine neutralization breadth and specificities against 17 tier 2 envelope-pseudoviruses. RESULTS: Longitudinal plasma from three SHIVSF162P3-infected macaques and three SHIV1157ipd3N4-infected macaques rarely neutralized viruses (<25%) within 1 year of infection. The neutralization breadth in two SHIV1157ipd3N4-infected macaques significantly increased (≥65%) by year 6. Four of six SHIV1157ipd3N4-infected macaques could neutralize 50-75% viruses, whereas none of macaques infected with SHIVSF162P3 or SHIVCHN19P4 could neutralize more than 25% of viruses after 6 years of infection (P = 0.035). Neutralization specificity analysis showed mutations resistant to bnAbs in V2, V3 or CD4bs regions could abrogate neutralization by year-6 plasma from three SHIV1157ipd3N4-infected macaques. CONCLUSION: These results demonstrate that bnAbs targeting common HIV-1 epitopes can be elicited in SHIV1157ipd3N4-infected macaques as in humans after 4-6 years of infection, and SHIV/NHP can serve as an ideal model to study bnAb maturation.


Subject(s)
Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV/immunology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Animals , Epitopes, B-Lymphocyte/immunology , Humans , Longitudinal Studies , Time Factors
13.
J Virol ; 90(19): 8644-60, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27440894

ABSTRACT

UNLABELLED: Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE: The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Immunization/methods , Animals , Drug Carriers , HIV Envelope Protein gp120/genetics , HIV-1/genetics , Rabbits , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vaccinia virus/genetics
14.
J Virol ; 90(2): 829-41, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26512079

ABSTRACT

UNLABELLED: HIV-1 establishes persistent infection in part due to its ability to evade host immune responses. Occlusion by glycans contributes to masking conserved sites that are targets for some broadly neutralizing antibodies (bNAbs). Previous work has shown that removal of a highly conserved potential N-linked glycan (PNLG) site at amino acid residue 197 (N7) on the surface antigen gp120 of HIV-1 increases neutralization sensitivity of the mutant virus to CD4 binding site (CD4bs)-directed antibodies compared to its wild-type (WT) counterpart. However, it is not clear if the role of the N7 glycan is conserved among diverse HIV-1 isolates and if other glycans in the conserved regions of HIV-1 Env display similar functions. In this work, we examined the role of PNLGs in the conserved region of HIV-1 Env, particularly the role of the N7 glycan in a panel of HIV-1 strains representing different clades, tissue origins, coreceptor usages, and neutralization sensitivities. We demonstrate that the absence of the N7 glycan increases the sensitivity of diverse HIV-1 isolates to CD4bs- and V3 loop-directed antibodies, indicating that the N7 glycan plays a conserved role masking these conserved epitopes. However, the effect of the N7 glycan on virus sensitivity to neutralizing antibodies directed against the V2 loop epitope is isolate dependent. These findings indicate that the N7 glycan plays an important and conserved role modulating the structure, stability, or accessibility of bNAb epitopes in the CD4bs and coreceptor binding region, thus representing a potential target for the design of immunogens and therapeutics. IMPORTANCE: N-linked glycans on the HIV-1 envelope protein have been postulated to contribute to viral escape from host immune responses. However, the role of specific glycans in the conserved regions of HIV-1 Env in modulating epitope recognition by broadly neutralizing antibodies has not been well defined. We show here that a single N-linked glycan plays a unique and conserved role among conserved glycans on HIV-1 gp120 in modulating the exposure or the stability of the receptor and coreceptor binding site without affecting the integrity of the Env in mediating viral infection or the ability of the mutant gp120 to bind to CD4. The observation that the antigenicity of the receptor and coreceptor binding sites can be modulated by a single glycan indicates that select glycan modification offers a potential strategy for the design of HIV-1 vaccine candidates.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Polysaccharides/analysis , Antigens, Surface/chemistry , Antigens, Surface/immunology , Binding Sites , Epitopes/chemistry , Epitopes/immunology , Glycosylation , HIV Antigens/chemistry , HIV Antigens/immunology , HIV Envelope Protein gp120/chemistry , HIV-1/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...