Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
PLoS One ; 13(3): e0193345, 2018.
Article in English | MEDLINE | ID: mdl-29494629

ABSTRACT

Audio recordings of the environment are an increasingly important technique to monitor biodiversity and ecosystem function. While the acquisition of long-duration recordings is becoming easier and cheaper, the analysis and interpretation of that audio remains a significant research area. The issue addressed in this paper is the automated reduction of environmental audio data to facilitate ecological investigations. We describe a method that first reduces environmental audio to vectors of acoustic indices, which are then clustered. This can reduce the audio data by six to eight orders of magnitude yet retain useful ecological information. We describe techniques to visualise sequences of cluster occurrence (using for example, diel plots, rose plots) that assist interpretation of environmental audio. Colour coding acoustic clusters allows months and years of audio data to be visualised in a single image. These techniques are useful in identifying and indexing the contents of long-duration audio recordings. They could also play an important role in monitoring long-term changes in species abundance brought about by habitat degradation and/or restoration.


Subject(s)
Environmental Monitoring/methods , Acoustics , Animals , Biodiversity , Cluster Analysis , Ecosystem
2.
Conserv Biol ; 32(1): 205-215, 2018 02.
Article in English | MEDLINE | ID: mdl-28612939

ABSTRACT

There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses.


Subject(s)
Conservation of Natural Resources , Forests , Biodiversity , Humans , Papua New Guinea , Remote Sensing Technology , Tropical Climate
3.
Ecol Appl ; 23(6): 1419-28, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24147413

ABSTRACT

Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data.


Subject(s)
Biodiversity , Birds/classification , Environmental Monitoring/methods , Animals , Birds/physiology , Population Density , Queensland , Time Factors
4.
Comput Biol Chem ; 32(5): 359-66, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18703385

ABSTRACT

Due to degeneracy of the observed binding sites, the in silico prediction of bacterial sigma(70)-like promoters remains a challenging problem. A large number of sigma(70)-like promoters has been biologically identified in only two species, Escherichia coli and Bacillus subtilis. In this paper we investigate the issues that arise when searching for promoters in other species using an ensemble of SVM classifiers trained on E. coli promoters. DNA sequences are represented using a tagged mismatch string kernel. The major benefit of our approach is that it does not require a prior definition of the typical -35 and -10 hexamers. This gives the SVM classifiers the freedom to discover other features relevant to the prediction of promoters. We use our approach to predict sigma(A) promoters in B. subtilis and sigma(66) promoters in Chlamydia trachomatis. We extended the analysis to identify specific regulatory features of gene sets in C. trachomatis having different expression profiles. We found a strong -35 hexamer and TGN/-10 associated with a set of early expressed genes. Our analysis highlights the advantage of using TSS-PREDICT as a starting point for predicting promoters in species where few are known.


Subject(s)
Artificial Intelligence , Bacteria/genetics , Computational Biology/methods , Promoter Regions, Genetic/genetics , Bacillus subtilis/genetics , Base Sequence , Binding Sites/genetics , Chlamydia trachomatis/genetics , Chromosome Mapping/methods , Escherichia coli/genetics , Gene Expression Profiling , Molecular Sequence Data , Regulatory Elements, Transcriptional/genetics , Sigma Factor/genetics , Transcription Initiation Site
5.
Genome Inform ; 19: 178-89, 2007.
Article in English | MEDLINE | ID: mdl-18546515

ABSTRACT

In silico approaches to the identification of bacterial promoters are hampered by poor conservation of their characteristic binding sites. This suggests that the usual position weight matrix models of bacterial promoters are incomplete. A number of methods have been used to overcome this inadequacy, one of which is to incorporate structural properties of DNA. In this paper we describe an extension of the promoter description to include SIDD (stress induced duplex destabilization), DNA curvature and stacking energy. Although we report the best result to date for a realistic promoter prediction task, surprisingly, DNA structural properties did not contribute significantly to this result. We also demonstrate for the first time, that sigma-54 promoters have a stronger association with SIDD than do other promoter types.


Subject(s)
Computational Biology/methods , Genome, Bacterial , Promoter Regions, Genetic , Algorithms , DNA/chemistry , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Models, Genetic , Nucleic Acid Conformation , RNA Polymerase Sigma 54/genetics , Reproducibility of Results , Software
6.
Int J Neural Syst ; 16(5): 363-70, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17117497

ABSTRACT

Identifying promoters is the key to understanding gene expression in bacteria. Promoters lie in tightly constrained positions relative to the transcription start site (TSS). In this paper, we address the problem of predicting transcription start sites in Escherichia coli. Knowing the TSS position, one can then predict the promoter position to within a few base pairs, and vice versa. The accepted method for promoter prediction is to use a pair of position weight matrices (PWMs), which define conserved motifs at the sigma-factor binding site. However this method is known to result in a large number of false positive predictions, thereby limiting its usefulness to the experimental biologist. We adopt an alternative approach based on the Support Vector Machine (SVM) using a modified mismatch spectrum kernel. Our modifications involve tagging the motifs with their location, and selectively pruning the feature set. We quantify the performance of several SVM models and a PWM model using a performance metric of area under the detection-error tradeoff (DET) curve. SVM models are shown to outperform the PWM on a biologically realistic TSS prediction task. We also describe a more broadly applicable peak scoring technique which reduces the number of false positive predictions, greatly enhancing the utility of our results.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic/genetics , Transcription Initiation Site/physiology , Transcription, Genetic/genetics , Artificial Intelligence
SELECTION OF CITATIONS
SEARCH DETAIL
...