Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Biomol NMR ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918317

ABSTRACT

Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2'-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.

2.
Nat Commun ; 15(1): 3303, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664397

ABSTRACT

The DEAD-box RNA helicase (DDX) plays a central role in many aspects of RNA metabolism by remodeling the defined structure of RNA molecules. While a number of structural studies have revealed the atomistic details of the interaction between DDX and RNA ligands, the molecular mechanism of how this molecule unwinds a structured RNA into an unstructured single-stranded RNA (ssRNA) has largely remained elusive. This is due to challenges in structurally characterizing the unwinding intermediate state and the lack of thermodynamic details underlying this process. In this study, we use solution nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction of human DDX3X, a member of the DDX family, with various RNA ligands. Our results show that the inherent binding affinity of DDX3X for ssRNA is significantly higher than that for structured RNA elements. This preferential binding, accompanied by the formation of a domain-closed conformation in complex with ssRNA, effectively stabilizes the denatured ssRNA state and thus underlies the unwinding activity of DDX3X. Our results provide a thermodynamic and structural basis for the DDX function, whereby DDX can recognize and remodel a distinct set of structured RNAs to participate in a wide range of physiological processes.


Subject(s)
DEAD-box RNA Helicases , Protein Binding , RNA , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , Humans , RNA/metabolism , RNA/chemistry , Thermodynamics , Magnetic Resonance Spectroscopy , Models, Molecular , Nucleic Acid Conformation
3.
J Am Chem Soc ; 146(12): 8242-8259, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38477967

ABSTRACT

The DegP protease-chaperone operates within the periplasm of Gram-negative bacteria, where it assists in the regulation of protein homeostasis, promotes virulence, and is essential to survival under stress. To carry out these tasks, DegP forms a network of preorganized apo oligomers that facilitate the capture of substrates within distributions of cage-like complexes which expand to encapsulate clients of various sizes. Although the architectures of DegP cage complexes are well understood, little is known about the structures, dynamics, and interactions of client proteins within DegP cages and the relationship between client structural dynamics and function. Here, we probe host-guest interactions within a 600 kDa DegP cage complex throughout the DegP activation cycle using a model α-helical client protein through a combination of hydrodynamics measurements, methyl-transverse relaxation optimized spectroscopy-based solution nuclear magnetic resonance studies, and proteolytic activity assays. We find that in the presence of the client, DegP cages assemble cooperatively with few intermediates. Our data further show that the N-terminal half of the bound client, which projects into the interior of the cages, is predominantly unfolded and flexible, and exchanges between multiple conformational states over a wide range of time scales. Finally, we show that a concerted structural transition of the protease domains of DegP occurs upon client engagement, leading to activation. Together, our findings support a model of DegP as a highly cooperative and dynamic molecular machine that stabilizes unfolded states of clients, primarily via interactions with their C-termini, giving rise to efficient cleavage.


Subject(s)
Heat-Shock Proteins , Hydrodynamics , Periplasmic Proteins , Serine Endopeptidases , Humans , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Magnetic Resonance Spectroscopy
4.
J Magn Reson ; 349: 107412, 2023 04.
Article in English | MEDLINE | ID: mdl-36907132

ABSTRACT

The measurement of spin relaxation rates provides a unique avenue for quantifying dynamic processes in biomolecules. In order to simplify analysis of the measurements so that a few key intuitive parameters can be extracted, it is often the case that experiments are designed to eliminate interference effects between different classes of spin relaxation. One example emerges in the measurement of amide proton (1HN) transverse relaxation rates in 15N labeled proteins, where 15N inversion pulses are applied during a relaxation element to eliminate cross-correlated spin relaxation between 1HN-15N dipole-1HN CSA interactions. We show that unless these pulses are essentially perfect, significant oscillations in magnetization decay profiles can be obtained, due to the excitation of multiple-quantum coherences, leading potentially to errors in measured R2 rates. With the recent development of experiments for quantifying electrostatic potentials via amide proton relaxation rates, the need for highly accurate measurement schemes becomes critical. Straightforward modifications to existing pulse sequences are suggested to achieve this goal.


Subject(s)
Amides , Protons , Nuclear Magnetic Resonance, Biomolecular , Proteins
5.
Plants (Basel) ; 12(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36840296

ABSTRACT

Polyphenol-rich rabbiteye blueberry (Vaccinium virgatum Aiton) leaves have attracted attention as a food material. In this study, we compared the total polyphenols, total proanthocyanidin content, and antioxidant activity of the leaves of 18 blueberry varieties and investigated the seasonal variation in polyphenols. We also evaluated the anti-cancer cell proliferation properties of the rabbiteye blueberry leaf specific cultivar 'Kunisato 35 Gou'. Rabbiteye blueberry leaves had significantly higher total polyphenol and total proanthocyanidin values than northern highbush blueberry and southern highbush blueberry leaves. The antioxidant activity of blueberry leaves was highly positively correlated with both the total polyphenol and total proanthocyanidin content. Variations were observed in the total polyphenol and total proanthocyanidin content of rabbiteye blueberry leaves harvested at different points in the growing season; leaves collected in fall to winter contained more epicatechin in addition to proanthocyanidins. In the evaluation of anti-cancer cell proliferation properties against HL-60 promyelocytic leukemia cells, the September-harvested extracts of rabbiteye blueberry 'Kunisato 35 Gou' showed strong properties, and the use of an FITC Annexin V apoptosis detection kit with propidium iodide confirmed that this HL-60 cell death occurred via apoptosis. Limiting the harvest time would make rabbiteye blueberry leaves a more functional food ingredient.

6.
J Magn Reson ; 349: 107400, 2023 04.
Article in English | MEDLINE | ID: mdl-36796143

ABSTRACT

Electrostatic interactions can play important roles in regulating various biological processes. Quantifying surface electrostatics of biomolecules is, therefore, of significant interest. Recent advances in solution NMR spectroscopy have enabled site-specific measurements of de novo near-surface electrostatic potentials (ϕENS) based on a comparison of solvent paramagnetic relaxation enhancements generated from differently charged paramagnetic co-solutes with similar structures. Although the NMR-derived near-surface electrostatic potentials have been shown to agree with theoretical calculations in the context of folded proteins and nucleic acids, such benchmark comparisons may not always be possible, particularly in cases where high-resolution structural models are lacking, such as in the study of intrinsically disordered proteins. Cross-validation of ϕENS potentials can be achieved by comparing values obtained using three pairs of paramagnetic co-solutes, each with a different net charge. Notably we have found cases where agreement of ϕENS potentials between the three pairs is poor and herein we investigate the source of this discrepancy in some detail. We show that for the systems considered here ϕENS potentials obtained from cationic and anionic co-solutes are accurate and that the use of paramagnetic co-solutes with different structures can be a viable option for validation, although the optimal choice of paramagnetic compounds depends on the system of interest.


Subject(s)
Intrinsically Disordered Proteins , Nucleic Acids , Solvents , Static Electricity , Magnetic Resonance Spectroscopy/methods , Intrinsically Disordered Proteins/chemistry , Solutions , Nuclear Magnetic Resonance, Biomolecular/methods
7.
J Magn Reson ; 346: 107326, 2023 01.
Article in English | MEDLINE | ID: mdl-36508761

ABSTRACT

The HMQC pulse sequence and variants thereof have been exploited in studies of high molecular weight protein complexes, taking advantage of the fact that fast and slow relaxing magnetization components are sequestered along two distinct magnetization transfer pathways. Despite the simplicity of the HMQC scheme an even shorter version can be designed, based on elimination of the terminal refocusing period, as a further means of increasing signal. Here we present such an experiment, and show that significant sensitivity gains, in some cases by factors of two or more, are realized in studies of proteins varying in molecular masses from 100 kDa to 1 MDa.


Subject(s)
Proteins , Carbon Isotopes , Molecular Weight , Nuclear Magnetic Resonance, Biomolecular
8.
J Biol Chem ; 299(1): 102776, 2023 01.
Article in English | MEDLINE | ID: mdl-36496075

ABSTRACT

Biomolecular condensates concentrate proteins, nucleic acids, and small molecules and play an essential role in many biological processes. Their formation is tuned by a balance between energetically favorable and unfavorable contacts, with charge-charge interactions playing a central role in some systems. The positively charged intrinsically disordered carboxy-terminal region of the RNA-binding protein CAPRIN1 is one such example, phase separating upon addition of negatively charged ATP or high concentrations of sodium chloride (NaCl). Using solution NMR spectroscopy, we measured residue-specific near-surface electrostatic potentials (ϕENS) of CAPRIN1 along its NaCl-induced phase separation trajectory to compare with those obtained using ATP. In both cases, electrostatic shielding decreases ϕENS values, yet surface potentials of CAPRIN1 in the two condensates can be different, depending on the amount of NaCl or ATP added. Our results establish that even small differences in ϕENS can significantly affect the level of protein enrichment and the mechanical properties of the condensed phase, leading, potentially, to the regulation of biological processes.


Subject(s)
Hydrodynamics , Intrinsically Disordered Proteins , RNA-Binding Proteins , Adenosine Triphosphate , Intrinsically Disordered Proteins/chemistry , RNA-Binding Proteins/chemistry , Sodium Chloride/metabolism , Static Electricity
9.
J Biomol NMR ; 76(4): 137-152, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36018482

ABSTRACT

It has recently been demonstrated that accurate near surface electrostatic potentials can be calculated for proteins from solvent paramagnetic relaxation enhancements (PREs) of amide protons measured using spin labels of similar structures but different charges (Yu et al. in Proc Natl Acad Sci 118(25):e2104020118, 2021). Here we develop methodology for extending such measurements to intrinsically disordered proteins at neutral pH where amide spectra are of very poor quality. Under these conditions it is shown that accurate PRE values can be measured using the haCONHA experiment that has been modified for recording 1Hα transverse relaxation rates. The optimal pulse scheme includes a spin-lock relaxation element for suppression of homonuclear scalar coupled evolution for all 1Hα protons, except those derived from Ser and Thr residues, and minimizes the radiation damping field from water magnetization that would otherwise increase measured relaxation rates. The robustness of the experiment is verified by developing a second approach using a band selective adiabatic decoupling scheme for suppression of scalar coupling modulations during 1Hα relaxation and showing that the measured PRE values from the two methods are in excellent agreement. The near surface electrostatic potential of a 103-residue construct comprising the C-terminal intrinsically disordered region of the RNA-binding protein CAPRIN1 is obtained at pH 5.5 using both 1HN and 1Hα-based relaxation rates, and at pH 7.4 where only 1Hα rates can be quantified, with very good agreement between potentials obtained under all experimental conditions.


Subject(s)
Intrinsically Disordered Proteins , Protons , Amides/chemistry , Intrinsically Disordered Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Solvents
10.
Proc Natl Acad Sci U S A ; 119(36): e2210492119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36040869

ABSTRACT

Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.


Subject(s)
Biochemical Phenomena , Intrinsically Disordered Proteins , Phase Transition , RNA-Binding Proteins , Static Electricity , Adenosine Triphosphate/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Surface Properties
11.
Proc Natl Acad Sci U S A ; 119(17): e2203172119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35452308

ABSTRACT

The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)­based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.


Subject(s)
Mitochondrial Proteins , Peptide Hydrolases , High-Temperature Requirement A Serine Peptidase 2/chemistry , Humans , Mitochondrial Proteins/metabolism , Serine Endopeptidases/metabolism , Temperature
12.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34893543

ABSTRACT

Developments in solution NMR spectroscopy have significantly impacted the biological questions that can now be addressed by this methodology. By means of illustration, we present here a perspective focusing on studies of a number of molecular machines that are critical for cellular homeostasis. The role of NMR in elucidating the structural dynamics of these important molecules is emphasized, focusing specifically on intersubunit allosteric communication in homo-oligomers. In many biophysical studies of oligomers, allostery is inferred by showing that models specifically including intersubunit communication best fit the data of interest. Ideally, however, experimental studies focusing on one subunit of a multisubunit system would be performed as an important complement to the more traditional bulk measurements in which signals from all components are measured simultaneously. Using an approach whereby asymmetric molecules are prepared in concert with NMR experiments focusing on the structural dynamics of individual protomers, we present examples of how intersubunit allostery can be directly observed in high-molecular-weight protein systems. These examples highlight some of the unique roles of solution NMR spectroscopy in studies of complex biomolecules and emphasize the important synergy between NMR and other atomic resolution biophysical methods.

13.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34764225

ABSTRACT

Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 µs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.


Subject(s)
Proteins/metabolism , Entropy , Kinetics , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Domains/physiology , Protein Folding
14.
Membranes (Basel) ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34436367

ABSTRACT

A primary biological function of multi-spanning membrane proteins is to transfer information and/or materials through a membrane by changing their conformations. Therefore, particular dynamics of the membrane proteins are tightly associated with their function. The semi-atomic resolution dynamics information revealed by NMR is able to discriminate function-related dynamics from random fluctuations. This review will discuss several studies in which quantitative dynamics information by solution NMR has contributed to revealing the structural basis of the function of multi-spanning membrane proteins, such as ion channels, GPCRs, and transporters.

15.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34362850

ABSTRACT

DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.


Subject(s)
Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Periplasmic Proteins/chemistry , Periplasmic Proteins/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Cryoelectron Microscopy , Dynamic Light Scattering , Heat-Shock Proteins/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular/methods , Osmolar Concentration , Periplasmic Proteins/genetics , Protein Domains , Protein Refolding , Serine Endopeptidases/genetics , Temperature
16.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34446566

ABSTRACT

The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.


Subject(s)
High-Temperature Requirement A Serine Peptidase 2/metabolism , Mitochondria/metabolism , Mutation , PDZ Domains , Parkinson Disease/pathology , Promoter Regions, Genetic , Animals , Catalytic Domain , High-Temperature Requirement A Serine Peptidase 2/chemistry , High-Temperature Requirement A Serine Peptidase 2/genetics , Humans , Mice , Mitochondria/genetics , Models, Molecular , Parkinson Disease/etiology , Protein Conformation , Proteolysis , Structure-Activity Relationship
17.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074792

ABSTRACT

The role of biomolecular condensates in regulating biological function and the importance of dynamic interactions involving intrinsically disordered protein regions (IDRs) in their assembly are increasingly appreciated. While computational and theoretical approaches have provided significant insights into IDR phase behavior, establishing the critical interactions that govern condensation with atomic resolution through experiment is more difficult, given the lack of applicability of standard structural biological tools to study these highly dynamic large-scale associated states. NMR can be a valuable method, but the dynamic and viscous nature of condensed IDRs presents challenges. Using the C-terminal IDR (607 to 709) of CAPRIN1, an RNA-binding protein found in stress granules, P bodies, and messenger RNA transport granules, we have developed and applied a variety of NMR methods for studies of condensed IDR states to provide insights into interactions driving and modulating phase separation. We identify ATP interactions with CAPRIN1 that can enhance or reduce phase separation. We also quantify specific side-chain and backbone interactions within condensed CAPRIN1 that define critical sequences for phase separation and that are reduced by O-GlcNAcylation known to occur during cell cycle and stress. This expanded NMR toolkit that has been developed for characterizing IDR condensates has generated detailed interaction information relevant for understanding CAPRIN1 biology and informing general models of phase separation, with significant potential future applications to illuminate dynamic structure-function relationships in other biological condensates.


Subject(s)
Adenosine Triphosphate/chemistry , Cell Cycle Proteins/chemistry , Molecular Dynamics Simulation , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Domains
18.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33692127

ABSTRACT

Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.


Subject(s)
High-Temperature Requirement A Serine Peptidase 2/chemistry , Mitochondrial Proteins/chemistry , Binding Sites , Catalytic Domain , High-Temperature Requirement A Serine Peptidase 2/metabolism , Humans , Kinetics , Magnetic Resonance Spectroscopy , Mitochondrial Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Conformation , Protein Multimerization , Proteolysis , Structure-Activity Relationship , Thermodynamics
20.
CEN Case Rep ; 10(1): 126-131, 2021 02.
Article in English | MEDLINE | ID: mdl-32940880

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) refers to infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen, and has spread to pandemic levels since its inception in December 2019. While several risk factors for severe presentation have been identified, the clinical course for end-stage renal disease (ESRD) patients on maintenance hemodialysis with COVID-19 has been unclear. Previous studies have revealed that some antiviral agents may be effective against COVID-19 in the general population, but the pharmacokinetics and pharmacodynamics of these agents in ESRD patients remain under investigation. Favipiravir, an antiviral agent developed for treatment of influenza, is one candidate treatment for COVID-19, but suitable dosages for patients with renal insufficiency are unknown. Here we provide a first report on the efficacy of favipiravir in a patient with ESRD undergoing hemodialysis. CASE PRESENTATION: The case involved a 52-year-old woman with COVID-19 who had been undergoing maintenance hemodialysis three times a week for 3 years due to diabetic nephropathy. She had initially been treated with lopinavir/ritonavir and ciclesonide for 5 days, but developed severe pneumonia requiring invasive positive-pressure ventilation. Those antiviral agents were subsequently switched to favipiravir. She recovered gradually, and after 2 weeks was extubated once the viral load of SARS-CoV-2 fell below the limit of detection. Although concentrations of several biliary enzymes were elevated, no major adverse events were observed. CONCLUSION: Favipiravir may be an effective option for the treatment of COVID-19-infected patients with ESRD.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/complications , Kidney Failure, Chronic/complications , Pyrazines/therapeutic use , Female , Humans , Kidney Failure, Chronic/therapy , Middle Aged , Pandemics , Positive-Pressure Respiration , Renal Dialysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...