Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Molecules ; 27(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458717

ABSTRACT

The word "psychedelic" (psyche (i.e., the mind or soul) and delos (i.e., to show)) has Greek origin and was first coined by psychiatrist Humphry Osmond in 1956, who had been conducting research on lysergic acid diethylamide (LSD) at the time. Psychedelic drugs such as N,N-DMT/DMT (N,N-dimethyltryptamine), 5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), LSD (lysergic acid diethylamide), MDMA (3,4-methylenedioxymethamphetamine) and psilocybin have had significant value as an entheogen in spiritual, religious (shamanic) and sociocultural rituals in Central and South American cultures for thousands of years. In the 1960s, the globalization of these drugs and their subsequent spread outside of their indigenous, old-world cultures, led to the subsequent implementation of strict drug control laws in many Western countries. Even today, psychedelics are still classified as Schedule I drugs, resulting in a still lingering negative stigmatization/perception, vilification, and ultimate criminalization of psychedelics. This controversy still lingers and still limits scientific research and full medical acceptance. For many years up until recently, the spiritual, religious and medicinal value of these drugs could not be explored in a scientific context. More recently, a second wave of psychedelic research is now focusing on psychedelics as neuropharmaceuticals to treat alcohol and tobacco addiction, general mood and anxiety disorders and cancer-related depression. There is now a vast array of promising evidence-based data to confirm the years of anecdotal evidence of the medicinal values of psychedelics. Natural therapeutic alternatives such as psychedelic drugs may provide a safe and efficacious alternate to conventional drugs used to treat mood and anxiety disorders. In a Western context in particular, psychedelic drugs as therapeutic agents for mood and anxiety disorders are becoming increasingly of interest amidst increasing rates of such disorders globally, changing social constructions, the implementation of government regulations and increasing investment opportunities, that ultimately allow for the scientific study to generate evidenced-based data. Alternative psychotherapeutic interventions are gaining interest also, because of their low physiological toxicity, relatively low abuse potential, safe psychological effects, and no associated persisting adverse physiological or psychological effects during and after use. On the other hand, conventional psychotic drugs and anti-depressants are becoming less favorable because of their adverse side effects. Psychedelic neuropharmaceutical interventions may with medical oversight be the solution to conventional psychiatric disorders such as depression and anxiety, and an alternative to conventional psychiatric treatment options. This paper will review the therapeutic potential of psychedelic drugs as alternative therapeutic options for mood and anxiety disorders in a controlled, clinical setting, where the chances of adverse psychological episodes occurring are mitigated.


Subject(s)
Hallucinogens , N-Methyl-3,4-methylenedioxyamphetamine , Anxiety Disorders/drug therapy , Hallucinogens/therapeutic use , Humans , Lysergic Acid Diethylamide/therapeutic use , N,N-Dimethyltryptamine , Psilocybin/therapeutic use
2.
Dent J (Basel) ; 9(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34562980

ABSTRACT

Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.

3.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502379

ABSTRACT

The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.


Subject(s)
Cannabinoids/pharmacology , Endocannabinoids/metabolism , Endocannabinoids/physiology , Anxiety/drug therapy , Cannabinoid Receptor Agonists/pharmacology , Cannabis/metabolism , Cardiovascular Diseases/drug therapy , Depression/drug therapy , Feeding Behavior/drug effects , Homeostasis/drug effects , Humans , Neurodegenerative Diseases/drug therapy , Neurogenesis/drug effects , Pain/drug therapy , Receptors, Cannabinoid/metabolism
4.
Molecules ; 26(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063505

ABSTRACT

The psychedelic effects of some plants and fungi have been known and deliberately exploited by humans for thousands of years. Fungi, particularly mushrooms, are the principal source of naturally occurring psychedelics. The mushroom extract, psilocybin has historically been used as a psychedelic agent for religious and spiritual ceremonies, as well as a therapeutic option for neuropsychiatric conditions. Psychedelic use was largely associated with the "hippie" counterculture movement, which, in turn, resulted in a growing, and still lingering, negative stigmatization for psychedelics. As a result, in 1970, the U.S. government rescheduled psychedelics as Schedule 1 drugs, ultimately ending scientific research on psychedelics. This prohibition on psychedelic drug research significantly delayed advances in medical knowledge on the therapeutic uses of agents such as psilocybin. A 2004 pilot study from the University of California, Los Angeles, exploring the potential of psilocybin treatment in patients with advanced-stage cancer managed to reignite interest and significantly renewed efforts in psilocybin research, heralding a new age in exploration for psychedelic therapy. Since then, significant advances have been made in characterizing the chemical properties of psilocybin as well as its therapeutic uses. This review will explore the potential of psilocybin in the treatment of neuropsychiatry-related conditions, examining recent advances as well as current research. This is not a systematic review.


Subject(s)
Hallucinogens/therapeutic use , Mental Disorders/drug therapy , Neoplasms/drug therapy , Psilocybin/therapeutic use , Biomedical Research/legislation & jurisprudence , Clinical Studies as Topic , Hallucinogens/chemistry , Hallucinogens/pharmacology , Humans , Molecular Structure , Psilocybin/chemistry , Psilocybin/pharmacology
5.
Plants (Basel) ; 10(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672441

ABSTRACT

The cannabis plant (Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most-prominent and most-studied secondary metabolites-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Both Δ9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids-of which approximately over 104 exist. This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus OC43 (HCov-OC43) that is responsible for COVID-19, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials. As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.

6.
Molecules ; 26(3)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503834

ABSTRACT

Plants have had historical significance in medicine since the beginning of civilization. The oldest medical pharmacopeias of the African, Arabian, and Asian countries solely utilize plants and herbs to treat pain, oral diseases, skin diseases, microbial infections, multiple types of cancers, reproductive disorders among a myriad of other ailments. The World Health Organization (WHO) estimates that over 65% of the world population solely utilize botanical preparations as medicine. Due to the abundance of plants, plant-derived medicines are more readily accessible, affordable, convenient, and have safer side-effect profiles than synthetic drugs. Plant-based decoctions have been a significant part of Jamaican traditional folklore medicine. Jamaica is of particular interest because it has approximately 52% of the established medicinal plants that exist on earth. This makes the island particularly welcoming for rigorous scientific research on the medicinal value of plants and the development of phytomedicine thereof. Viral infections caused by the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2), hepatitis virus B and C, influenza A virus, and the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) present a significant global burden. This is a review of some important Jamaican medicinal plants, with particular reference to their antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Plants, Medicinal/chemistry , Viruses/drug effects , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , Jamaica , Microbial Sensitivity Tests , Viruses/classification
8.
Molecules ; 25(11)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545268

ABSTRACT

Flavonoids are widely used as phytomedicines. Here, we report on flavonoid phytomedicines with potential for development into prophylactics or therapeutics against coronavirus disease 2019 (COVID-19). These flavonoid-based phytomedicines include: caflanone, Equivir, hesperetin, myricetin, and Linebacker. Our in silico studies show that these flavonoid-based molecules can bind with high affinity to the spike protein, helicase, and protease sites on the ACE2 receptor used by the severe acute respiratory syndrome coronavirus 2 to infect cells and cause COVID-19. Meanwhile, in vitro studies show potential of caflanone to inhibit virus entry factors including, ABL-2, cathepsin L, cytokines (IL-1ß, IL-6, IL-8, Mip-1α, TNF-α), and PI4Kiiiß as well as AXL-2, which facilitates mother-to-fetus transmission of coronavirus. The potential for the use of smart drug delivery technologies like nanoparticle drones loaded with these phytomedicines to overcome bioavailability limitations and improve therapeutic efficacy are discussed.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus OC43, Human/drug effects , Flavonoids/pharmacology , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/growth & development , Binding Sites , COVID-19 , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/genetics , Coronavirus OC43, Human/chemistry , Coronavirus OC43, Human/growth & development , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Flavonoids/chemistry , Humans , Interleukins/antagonists & inhibitors , Interleukins/chemistry , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Lung/drug effects , Lung/pathology , Lung/virology , Mice , Molecular Docking Simulation , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phytotherapy/methods , Pneumonia, Viral/genetics , Primary Cell Culture , Protein Binding , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Virus Internalization/drug effects
9.
Biomed Res Int ; 2020: 7465242, 2020.
Article in English | MEDLINE | ID: mdl-32258141

ABSTRACT

Recent comparisons between plant and animal viruses reveal many common principles that underlie how all viruses express their genetic material, amplify their genomes, and link virion assembly with replication. Cauliflower mosaic virus (CaMV) is not infectious for human beings. Here, we show that CaMV transactivator/viroplasmin protein (TAV) shares sequence similarity with and behaves like the human ribonuclease H1 (RNase H1) in reducing DNA/RNA hybrids detected with S9.6 antibody in HEK293T cells. We showed that TAV is clearly expressed in the cytosol and in the nuclei of transiently transfected human cells, similar to its distribution in plants. TAV also showed remarkable cytotoxic effects in U251 human glioma cells in vitro. These characteristics pave the way for future analysis on the use of the plant virus protein TAV, as an alternative to human RNAse H1 during gene therapy in human cells.


Subject(s)
Caulimovirus/enzymology , Glioma/drug therapy , Ribonuclease H , Viral Proteins , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/pharmacology , Glioma/metabolism , Glioma/pathology , HEK293 Cells , Humans , Ribonuclease H/chemistry , Ribonuclease H/pharmacology , Viral Proteins/chemistry , Viral Proteins/pharmacology
10.
Front Oncol ; 9: 660, 2019.
Article in English | MEDLINE | ID: mdl-31396485

ABSTRACT

Pancreatic cancer is particularly refractory to modern therapies, with a 5-year survival rate for patients at a dismal 8%. One of the significant barriers to effective treatment is the immunosuppressive pancreatic tumor microenvironment and development of resistance to treatment. New treatment options to increase both the survival and quality of life of patients are urgently needed. This study reports on a new non-cannabinoid, non-psychoactive derivative of cannabis, termed FBL-03G, with the potential to treat pancreatic cancer. In vitro results show major increase in apoptosis and consequential decrease in survival for two pancreatic cancer models- Panc-02 and KPC pancreatic cancer cells treated with varying concentrations of FBL-03G and radiotherapy. Meanwhile, in vivo results demonstrate therapeutic efficacy in delaying both local and metastatic tumor progression in animal models with pancreatic cancer when using FBL-03G sustainably delivered from smart radiotherapy biomaterials. Repeated experiments also showed significant (P < 0.0001) increase in survival for animals with pancreatic cancer compared to control cohorts. The findings demonstrate the potential for this new cannabis derivative in the treatment of both localized and advanced pancreatic cancer, providing impetus for further studies toward clinical translation.

11.
Pharmacognosy Res ; 9(1): 116-118, 2017.
Article in English | MEDLINE | ID: mdl-28250664

ABSTRACT

Viral hepatitis B (HBV) and hepatitis C (HCV) pose a major health problem globally and if untreated, both viruses lead to severe liver damage resulting in liver cirrhosis and cancer. While HBV has a vaccine, HCV has none at the moment. The risk of drug resistance, combined with the high cost of current therapies, makes it a necessity for cost-effective therapeutics to be discovered and developed. The recent surge in interest in Medical Cannabis has led to interest in evaluating and validating the therapeutic potentials of Cannabis and its metabolites against various diseases including viruses. Preliminary screening of cannabidiol (CBD) revealed that CBD is active against HCV but not against HBV in vitro. CBD inhibited HCV replication by 86.4% at a single concentration of 10 µM with EC50 of 3.163 µM in a dose-response assay. These findings suggest that CBD could be further developed and used therapeutically against HCV. SUMMARY: Cannabidiol exhibited in vitro activity against viral hepatitis C. Abbreviations Used: CB2: Cannabis receptor 2, CBD: Cannabidiol, DNA: Deoxyribonucleic acid, HBV: Hepatitis B virus, HCV: Hepatitis C virus, HIV/AIDS: Human immunodeficiency virus/acquired immune deficiency syndrome, HSC: Hepatic stellate cells, MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium, PCR: Polymerase chain reaction.

12.
Cancer Cell Int ; 17: 38, 2017.
Article in English | MEDLINE | ID: mdl-28286420

ABSTRACT

BACKGROUND: The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. METHODS: The plant biomass was extracted using supercritical fluid extraction technology with CO2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. RESULTS: A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the cell cycle as evidenced by the accumulation of cells with 

13.
Nat Prod Commun ; 9(5): 687-9, 2014 May.
Article in English | MEDLINE | ID: mdl-25026722

ABSTRACT

1,3-di-O-Cinnamoyl-glycerol is a natural compound isolated from a Jamaican medicinal plant commonly referred to as Ball moss (Tillandsia recurvata). The synthesis of this compound was achieved via a Wittig chemistry process. The synthetic approach started with acylation of a di-protected glycerol with cinnamoyl chloride, deprotection of the glycerol moiety, reaction of the primary alcohol with bromo acetylbromide followed by treatment with triphenyl phosphine to give the corresponding phosphonium bromide. The phosphonium bromide was then converted in situ to the Wittig reagent which is the basis for a novel route to 1,3-di-O-cinnamoyl glycerol. Four analogs were also synthesized, three of which are new and are being reported in this article for the first time. The new compounds include 3-(3,4-diemthoxy-phenyl)-acrylic acid 2-hydroxy-3-(3-ptolyl-acryloyloxy)-propyl ester (3), 2-acetoxy-5-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop- 1-enyl)benzoic acid (4) and 4-((E)-3-(3-((E)-3-(3,4-dimethoxyphenyl)acryloyloxy)-2-hydropropoxy)-3-oxoprop-1-enyl)benzoic acid (5). The compounds showed no activity in our anticancer assay.


Subject(s)
Cinnamates/chemical synthesis , Glycerol/analogs & derivatives , Glycerol/chemical synthesis
14.
Anticancer Res ; 34(7): 3505-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24982361

ABSTRACT

BACKGROUND: Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 µg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 µM to 18.3 µM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles.


Subject(s)
Leukemia/drug therapy , Tillandsia/chemistry , Triterpenes/pharmacology , Cell Line, Tumor , HL-60 Cells , Humans , K562 Cells , Plant Extracts/isolation & purification , Plant Extracts/pharmacology
15.
Anticancer Res ; 34(4): 1637-41, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24692692

ABSTRACT

BACKGROUND/AIM: The Jamaican "Guinea Hen Weed" (Petiveria alliacea L.) plant has been traditionally used in folklore medicine to treat a variety of diseases including cancer. In the present study we investigated on the therapeutic feasibility of dibenzyl trisulfide (DTS) (isolated from the Jamaican Guinea Hen Weed) as a potent small-molecule kinase inhibitor to treat cancer. MATERIALS AND METHODS: We investigated the inhibitory effects of DTS against a large panel of kinases using a well-established competitive binding assay. Cell proliferation data were obtained using the WST-1 colorimetric assay. RESULTS: DTS inhibited the activity of the C-terminal kinase domain of RSK1 (80% compared to control) with a Kd of 1.3 µM. Anti-proliferative effects of DTS were observed in small lung, pancreatic, breast, and prostate cancer cells with IC50 values ranging from 0.34-0.84 µM. CONCLUSION: We have identified DTS as a highly selective and isoform-specific RSK1 kinase inhibitor with broad cancer therapeutic potential.


Subject(s)
Antineoplastic Agents/pharmacology , Benzyl Compounds/pharmacology , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases/antagonists & inhibitors , Sulfides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Benzyl Compounds/chemistry , Benzyl Compounds/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/toxicity , Sulfides/chemistry , Sulfides/toxicity
16.
J Ethnopharmacol ; 150(2): 724-8, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24095832

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vernonia guineensis Benth. (Asteraceae) root decoction is used in folk medicine in Cameroon to treat some ailments including prostate cancer. The aim of this study was to validate the claimed antiprostate cancer activity of Vernonia guineensis Benth. in vivo and to investigate the cytotoxicity of a pentaisovaleryl sucrose isolated from Vernonia guineensis on some cancer cell lines. MATERIALS AND METHODS: A crude dichloromethane extract of Vernonia guineensis (VGDE) was used for this study. For in vivo antiprostate cancer efficacy, nude mice (n=16) were injected subcutaneously with prostate cancer PC-3 cells. Upon the formation of the xenograft tumors, the mice were divided into two equal groups with approximately the same mean tumor volume per group. One group was treated with VGDE orally (500 mg/kg) and the other with a vehicle control for 30 days. Body weight and tumor volumes were measured 2× a week and on the 33rd day, the mice were euthanized and tumors harvested and weighed. For the cytotoxicity study, the WST-1 assay was used to determine the activity of pentaisovaleryl sucrose previously isolated from VGDE. The cancer cell lines used in the cytotoxicity study included breast, colon, leukemia, lung, melanoma, ovarian and prostate. RESULTS: Prostate cancer (PC-3) xenograft tumors treated with VGDE showed a significant decrease in tumor size (P=0.0295) compared to control. Pentaisovaleryl sucrose also demonstrated cytotoxicity against various cancer cell lines with IC50 values as follows: MDA-MD-231-6.66µM; MCF-7-7.50 µM; HCT116-14.12 µM; A549-5.76 µM; HL60-6.43 µM; A375-8.64 µM; OVCAR3-9.53 µM; Capan1-7.13 µM; Mia-Paca 6.47 µM. CONCLUSION: VGDE does possess in vivo activity against prostate tumor and has potential for development into a natural product for the treatment of prostate cancer. This study thus provides preliminary validation for the folk use of Vernonia guineensis against prostate conditions. Further in vivo studies are however required to confirm these results and to understand the mechanism of action of VGDE and the in vivo efficacy of pentaisovaleryl sucrose.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Plant Extracts/therapeutic use , Prostatic Neoplasms/drug therapy , Sucrose/analogs & derivatives , Sucrose/therapeutic use , Vernonia , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Male , Mice , Mice, Nude , Phytotherapy , Plant Extracts/pharmacology , Plant Tubers , Sucrose/pharmacology , Xenograft Model Antitumor Assays
17.
J Ethnopharmacol ; 147(3): 618-21, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23542146

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aqueous preparations of Vernonia guineensis Benth. (Asteraceae) are used in Cameroonian folk medicine as a general stimulant and to treat various illnesses and conditions including malaria, bacterial infections and helminthic infestations. MATERIALS AND METHODS: Ten gram samples of the leaf and tuber powders of Vernonia guineensis were extracted separately using dichloromethane, methanol and distilled water. The extracts were dried in vacuo and used in bioassays. These extracts and three compounds previously isolated from Vernonia guineensis [vernopicrin (1), vernomelitensin (2) and pentaisovalerylsucrose (3)] were screened for antiplasmodial activity against chloroquine (CQ)-sensitive (Hb3) and CQ-resistant (Dd2) Plasmodium falciparum lines. RESULTS: Crude extracts and pure compounds from Vernonia guineensis showed antiplasmodial activity against both Hb3 and Dd2. The IC50 values of extracts ranged from 1.64 to 27.2 µg/ml for Hb3 and 1.82-30.0 µg/ml for Dd2; those for compounds 1, 2 and 3 ranged from 0.47 to 1.62 µg/ml (1364-1774 nM) for Hb3 and 0.57-1.50 µg/ml (1644-2332nM) for Dd2. None of the crude extracts or pure compounds was observed to exert toxic effects on the erythrocytes used to cultivate the Plasmodium falciparum lines. CONCLUSION: In Cameroonian folk medicine, Vernonia guineensis may be used to treat malaria in part due to the antiplasmodial activity of sesquiterpene lactones (1, 2), a sucrose ester (3) and perhaps other compounds present in crude plant extracts. Exploring the safety and antiplasmodial efficacy of these compounds in vivo requires further study.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Vernonia , Cameroon , Erythrocytes/drug effects , Lactones/pharmacology , Medicine, African Traditional , Plant Leaves , Plant Tubers , Sesquiterpenes/pharmacology , Sucrose/pharmacology
18.
J Ethnopharmacol ; 146(2): 552-6, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23376285

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Vernonia guineensis Benth. (Asteraceae) preparations are used in folk medicine in Cameroon to treat a number of ailments, including prostate cancer and malaria, and is used as an anthelmintic, adaptogen and antidote. The aim of this study was to continue the validation of the activity of Vernonia guineensis Benth. extracts and isolated molecules against cancer cell lines following the previous isolation of an anti-prostate cancer sugar ester from the root extract. MATERIALS AND METHODS: Acetone extracts of Vernonia guineensis Benth. leaves were tested for activity against 10 cancer cell lines (Breast-MDA-MB-231, Breast-MCF-7, Colon-HCT-116, Leukemia-HL-60, Lung-A549, Melanoma-A375, Ovarian-OVCAR3, Pancreas-Mia-paca, Prostate-PC-3 and Prostate-DU-145). The acetone extract was subjected to bioactivity guided fractionation. Anti-proliferation and clonogenic activity of the isolated compounds were tested. The WST-1 assay was used for the anti-proliferation activity, while the standard clonogenic test was used to determine the clonogenic activity. RESULTS: The acetone extract of Vernonia guineensis Benth. demonstrated in vitro activity ranging from IC50 4-26µg/mL against the 10 cell lines. Activity guided fractionation of this extract yielded two sesquiterpene lactones, isolated for the first time from the genus Vernonia. The compounds were characterized using spectroscopic experiments, including a combination of 1D and 2D NMR data. Vernopicrin (1) and Vernomelitensin (2) demonstrated in vitro activity against human cancer cell lines with IC50 ranging from 0.35-2.04µM (P<0.05) and 0.13-1.5µM (P<0.05), respectively, between the most and least sensitive cell lines for each compound. Vernopicrin was most active against the human melanoma (A375) cell line and least active against the lung cancer (A549) cell line, while Vernomelitensin was also most active against the human melanoma (A375) cell line and least active against the breast cancer (MCF-7) cell line. Both compounds also demonstrated anticlonogenic activity. CONCLUSION: The cytotoxicity demonstrated by the crude extract and isolated sesquiterpenes against cancer cell lines highlights the medicinal potential of V. guineensis. The selective anti-proliferation and dose dependent anticlonogenic activities suggest that the identified sesquiterpenes could be potential antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Lactones/pharmacology , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Vernonia , Cameroon , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Medicine, African Traditional , Plant Leaves
19.
J Ethnopharmacol ; 146(3): 681-723, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23395623

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Vernonia genus has about one thousand species and members of the genus are widely used as food and medicine. The aim of this review is to analyze published data on the ethnomedicinal, ethnoveterinary and zoopharmacognostic uses of plants of the Vernonia genus. This will help to identify the state of ethnopharmacological knowledge in regard to this genus and to propose future research priorities. MATERIALS AND METHODS: The major scientific databases including SciFinder, Sciencedirect, Medline and Google Scholar were queried for information on Vernonia genus using various keyword combinations. The International Plant Name Index was also used to verify the names of species and authors. RESULTS: A total of 109 Vernonia species were reported in the literature to have medicinal properties. One hundred and five (105) plants were linked to the treatment or management of 44 human diseases or health conditions. Plants of the genus also feature in ethnoveterinary and zoopharmacognostic practices. A total of 12 vernonia species were identified to be used in ethnoveterinary medicine while 2 species are used in self medication practices by chimpanzees and gorillas. In vitro and in vivo research studies reporting the validation of the medicinal properties of some species were also reviewed. One hundred and three bioactive compounds isolated from various Vernonia species were also identified. Vernonia amygdalina was identified as the most frequently used member of the Vernonia genus. The Vernolides, a class of sesquiterpene lactone were identified as the most studied compounds from the genus and show interesting bioactivity in antiplasmodial, antileishmanial, antischistosomial, cytotoxicity, antimicrobial and anti-inflammatory assays. CONCLUSION: On the basis of results from a combination of in vitro and in vivo efficacy and toxicity studies reported, Vernonia amygdalina holds the most promise for development into a nutraceutical against diabetes and malaria while Vernonia cinerea has potential against cancer and inflammatory conditions. Vernolide A is so far the most promising single agent from a Vernonia species that has potential for development into an anticancer agent. The other Vernonia species and isolated compounds require further studies to ascertain their medicinal potentials.


Subject(s)
Ethnopharmacology , Medicine, Traditional , Plant Preparations , Vernonia/chemistry , Animals , Humans , Plant Preparations/isolation & purification , Plant Preparations/pharmacology , Plant Preparations/therapeutic use , Vernonia/classification , Vernonia/toxicity
20.
Am Int J Contemp Res ; 3(1): 93-96, 2013 Jan.
Article in English | MEDLINE | ID: mdl-26161295

ABSTRACT

A crude chloroform extract from the Jamaican Ball Moss (Tillandsia recurvata L.) was tested for activity against three human cancer cell lines including; A375 (human melanoma), MCF-7 (human breast) and PC-3 (human prostate cancer) using the WST-1 assay. IC50s obtained against these cell lines; A375, MCF-7 and PC-3 in the presence of the crude extract are; 0.9µg/ml, 40.51µg/ml and 5.97µg/ml respectively indicating the promising anti-cancer activity of the ball moss extract. Further, preliminary phytochemical study was conducted in an attempt to identify and isolate the phytochemicals that could possibly be responsible for the observed bioactivity of the ball moss chloroform extract. As a result, two dicinnamates were isolated; 1,3-di-O-Cinnamoyl-glycerol (1) and (E)-3-(cinnamoyloxy)-2-hydroxypropyl 3-(3,4-dimethoxyphenyl)acrylate (2) and we report for the first time isolation of compound 2. Even though the bioactivity of these two islaotes were fairly weak against the cell lines, the results presented here will prove useful for further research aimed at identifying molecules that maybe effective against melanoma, breast and prostate cancers associated with fewer side-effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...