Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Electromyogr Kinesiol ; 67: 102720, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36368144

ABSTRACT

The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Leg/physiology , Knee Joint/physiology , Electromyography , Torque
2.
Front Psychol ; 12: 759685, 2021.
Article in English | MEDLINE | ID: mdl-34744937

ABSTRACT

Laboratory tasks (e.g., the flanker task) reveal that incidental stimuli (e.g., distractors) can reliably trigger involuntary conscious imagery. Can such involuntary effects, involving competing representations, arise during dual-task conditions? Another concern about these laboratory tasks is whether such effects arise in highly ecologically-valid conditions. For example, do these effects arise from tasks involving dynamic stimuli (e.g., simulations of semi-automated driving experiences)? The data from our experiment suggest that the answer to our two questions is yes. Subjects were presented with video footage of the kinds of events that one would observe if one were seated in the driver's seat of a semi-automated vehicle. Before being presented with this video footage, subjects had been trained to respond to street signs according to laboratory techniques that cause stimulus-elicited involuntary imagery. After training, in the Respond condition, subjects responded to the signs; in the Suppress condition, subjects were instructed to not respond to the signs in the video footage. Subjects in the Suppress condition reported involuntary imagery on a substantive proportion of the trials. Such involuntary effects arose even under dual-task conditions (while performing the n-back task or psychomotor vigilance task). The present laboratory task has implications for semi-automated driving, because the safe interaction between driver and vehicle requires that the communicative signals from vehicle to driver be effective at activating the appropriate cognitions and behavioral inclinations. In addition, our data from the dual-task conditions provide constraints for theoretical models of cognitive resources.

3.
J Neurophysiol ; 126(5): 1653-1659, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34669517

ABSTRACT

Different neurophysiological strategies are used to perform angle adjustments during motor tasks such as car driving and force-control tasks using a fixed-rigid pedal. However, the difference in motor unit behavior in response to an increasing exerted force between tasks is unknown. This study aimed to investigate the difference in motor unit responsiveness on increasing force between force and position tasks. Twelve healthy participants performed ramp and hold contractions during ankle plantarflexion at 20% and 30% of the maximal voluntary contraction using a rigid pedal (force task) and a free pedal with an inertial load (position task). High-density surface electromyograms were recorded of the medial gastrocnemius muscle and decomposed into individual motor unit firing patterns. Ninety and hundred and nine motor units could be tracked between different target torques in each task. The mean firing rate increased and firing rate variability decreased on 10% maximal voluntary contraction force gain during both force and position tasks. There were no significant differences in these responses between the two tasks. Our results suggest that the motor unit firing rate is similarly regulated between force and position tasks in the medial gastrocnemius muscle with an increase in the exerted force.NEW & NOTEWORTHY Different neurophysiological strategies are used to perform a force control task and angle adjustment task. Our results showed that motor unit firing rate is similarly regulated between the two tasks in the medial gastrocnemius muscle with an increase in the exerted force. Although it is reported that position tasks contribute to early fatigue, it does not seem to be a particular problem for the increase in force.


Subject(s)
Motor Activity/physiology , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Psychomotor Performance/physiology , Recruitment, Neurophysiological/physiology , Adult , Electromyography , Female , Humans , Leg/physiology , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...