Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 165(1): 321-9, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14504239

ABSTRACT

Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.


Subject(s)
Arabidopsis/genetics , Chromosome Mapping , Selection, Genetic , Arabidopsis Proteins/genetics , Biological Evolution , Epistasis, Genetic , Genetic Variation , Geography , Quantitative Trait Loci , Seasons
2.
Genetics ; 162(4): 1875-84, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12524356

ABSTRACT

Molecular biologists are rapidly characterizing the genetic basis of flowering in model species such as Arabidopsis thaliana. However, it is not clear how the developmental pathways identified in controlled environments contribute to variation in reproductive timing in natural ecological settings. Here we report the first study of quantitative trait loci (QTL) for date of bolting (the transition from vegetative to reproductive growth) in A. thaliana in natural seasonal field environments and compare the results with those obtained under typical growth-chamber conditions. Two QTL specific to long days in the chamber were expressed only in spring-germinating cohorts in the field, and two loci specific to short days in the chamber were expressed only in fall-germinating cohorts, suggesting differential involvement of the photoperiod pathway in different seasonal environments. However, several other photoperiod-specific QTL with large effects in controlled conditions were undetectable in natural environments, indicating that expression of allelic variation at these loci was overridden by environmental factors specific to the field. Moreover, a substantial number of QTL with major effects on bolting date in one or more field environments were undetectable under controlled environment conditions. These novel loci suggest the involvement of additional genes in the transition to flowering under ecologically relevant conditions.


Subject(s)
Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Environment , Flowers/growth & development , Flowers/physiology , Genes, Plant , Genetic Variation , Photoperiod , Quantitative Trait Loci , Reproduction/genetics , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...