Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 14(Pt 2): 212-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17317923

ABSTRACT

The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \overline\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV.


Subject(s)
Synchrotrons , Ultraviolet Rays , X-Rays , Aluminum/radiation effects , Electrons , Mathematics , Radiometry , Synchrotrons/instrumentation
2.
J Synchrotron Radiat ; 13(Pt 4): 336-42, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16799225

ABSTRACT

Existing theory is developed further for description of transition radiation (TR) emitted by low-energy storage-ring synchrotrons. It takes into account the fact that the dielectric constant of the TR target material is a complex function, introduces an expression for the number of passes of an injected electron through the target, and accounts more precisely for the absorption of TR. It is shown that the consideration of the complexity of the dielectric constant results in notable changes of the TR spectrum for emitted photons with energies close to the ionization energies of the target material. Since such TR is used mostly for performing X-ray lithography (XRL), the sensitivity of the photoresist used in XRL is formulated. Maximization of this resist sensitivity can be used for designing optimum targets for XRL. Study of the transmission of TR through a commonly used XRL mask, and its partial absorption in a common photoresist, illustrates that TR emission with E = [490, 1860] eV is most useful for performing such XRL, while E approximately equal to 1 keV is best. It is shown that, for a particular target material, a target consisting of only one foil emits the most TR energy. Optimization of an Al target, based on maximization of the resist sensitivity, indicates that a target containing one Al foil with a thickness of about 200 nm would be best for performing XRL by our low-energy storage-ring synchrotron MIRRORCLE-20SX.


Subject(s)
Models, Chemical , Models, Molecular , Photochemistry/methods , Synchrotrons/instrumentation , X-Rays , Computer Simulation , Dose-Response Relationship, Radiation , Linear Energy Transfer , Phase Transition , Radiation Dosage , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...