Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
World Neurosurg ; 151: e484-e494, 2021 07.
Article in English | MEDLINE | ID: mdl-33901734

ABSTRACT

BACKGROUND: Calvarial lymphoma is an exceedingly rare phenomenon; the clinical presentation and imaging pattern mimic many diseases of the central nervous system. Several treatment approaches have been undertaken with variable use of surgery plus adjuvant chemotherapy and radiation; an optimal treatment algorithm has yet to be defined. The aim of this study was to better characterize management strategies and patient outcomes. METHODS: An illustrative case was presented and a meta-analysis was carried out in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. MEDLINE and Embase were searched for cases of calvarial lymphoma. Outcomes between patients who underwent open surgery and biopsy only were compared directly. RESULTS: In an analysis from 1976 to 2019, 62 patients with a median age of 60 were included. The most common presentations were subcutaneous scalp mass (89%), headaches (26%), and focal neurological deficits (21%). Osteolytic changes on computed tomography were seen in 69% of patients with extension into either the intracranial or extracranial space in 97% of cases. Surgical excision was performed in 41 patients with a remission rate of 85% and a recurrence rate of 5%, which did not vary significantly from patients treated nonsurgically (remission in 75%, P = 0.479; recurrence in 0%, P = 1.000) CONCLUSIONS: In patients presenting with a progressively enlarging scalp mass, calvarial lymphoma should be in the differential diagnosis, as it can be effectively managed with a biopsy followed by chemotherapy and radiation. The role for open surgery may be limited.


Subject(s)
Bone Neoplasms/pathology , Lymphoma, Non-Hodgkin/pathology , Skull/pathology , Female , Humans , Middle Aged
3.
Front Neurol ; 10: 434, 2019.
Article in English | MEDLINE | ID: mdl-31164858

ABSTRACT

Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.

4.
J Neurosurg Pediatr ; 23(3): 274-284, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30544364

ABSTRACT

OBJECTIVE Drug-resistant epilepsy (DRE) presents a therapeutic challenge in children, necessitating the consideration of multiple treatment options. Although deep brain stimulation (DBS) has been studied in adults with DRE, little evidence is available to guide clinicians regarding the application of this potentially valuable tool in children. Here, the authors present the first systematic review aimed at understanding the safety and efficacy of DBS for DRE in pediatric populations, emphasizing patient selection, device placement and programming, and seizure outcomes. METHODS The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations. Relevant articles were identified from 3 electronic databases (MEDLINE, Embase, and Cochrane CENTRAL) from their inception to November 17, 2017. Inclusion criteria of individual studies were 1) diagnosis of DRE; 2) treatment with DBS; 3) inclusion of at least 1 pediatric patient (age ≤ 18 years); and 4) patient-specific data. Exclusion criteria for the systematic review included 1) missing data for age, DBS target, or seizure freedom; 2) nonhuman subjects; and 3) editorials, abstracts, review articles, and dissertations. RESULTS This review identified 21 studies and 40 unique pediatric patients (ages 4­18 years) who received DBS treatment for epilepsy. There were 18 patients with electrodes placed in the bilateral or unilateral centromedian nucleus of the thalamus (CM) electrodes, 8 patients with bilateral anterior thalamic nucleus (ATN) electrodes, 5 patients with bilateral and unilateral hippocampal electrodes, 3 patients with bilateral subthalamic nucleus (STN) and 1 patient with unilateral STN electrodes, 2 patients with bilateral posteromedial hypothalamus electrodes, 2 patients with unilateral mammillothalamic tract electrodes, and 1 patient with caudal zona incerta electrode placement. Overall, 5 of the 40 (12.5%) patients had an International League Against Epilepsy class I (i.e., seizure-free) outcome, and 34 of the 40 (85%) patients had seizure reduction with DBS stimulation. CONCLUSIONS DBS is an alternative or adjuvant treatment for children with DRE. Prospective registries and future clinical trials are needed to identify the optimal DBS target, although favorable outcomes are reported with both CM and ATN in children. ABBREVIATIONS ATN = anterior thalamic nucleus; CM = centromedian nucleus of the thalamus; DBS = deep brain stimulation; DRE = drug-resistant epilepsy; RNS = responsive neurostimulation; STN = subthalamic nucleus; VNS = vagus nerve stimulation.


Subject(s)
Deep Brain Stimulation/methods , Drug Resistant Epilepsy/therapy , Adolescent , Child , Child, Preschool , Deep Brain Stimulation/adverse effects , Drug Resistant Epilepsy/diagnosis , Electrodes, Implanted , Female , Hippocampus , Humans , Male , Subthalamic Nucleus , Thalamus , Treatment Outcome
5.
J Genet Couns ; 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30033481

ABSTRACT

Clinical use of genome-wide sequencing (GWS) requires pre-test genetic counseling, but the availability of genetic counseling is limited. We developed an interactive online decision-support tool, DECIDE, to make genetic counseling, patient education, and decision support more readily available. We performed a non-inferiority trial comparing DECIDE to standard genetic counseling to assess the clinical value of DECIDE for pre-GWS counseling. One hundred and six parents considering GWS for their children with epilepsy were randomized to conventional genetic counseling or DECIDE. Following the intervention, we measured parents' knowledge and empowerment and asked their opinions about using DECIDE. Both DECIDE and conventional genetic counseling significantly increased parents' knowledge, with no difference between groups. Empowerment also increased but by less than 2% in each group. Parents liked using DECIDE and found it useful; 81% would recommend it to others; 49% wished to use it along with a genetic counselor; 26% of parents preferred to see a genetic counselor; 7% preferred DECIDE alone; and 18% had no preference. DECIDE appears equivalent to genetic counseling at conveying information. In addition, it was highly acceptable to the majority of study participants, many of whom indicated that it was useful to their decision-making. Use of DECIDE as a pre-test tool may extend genetic counseling resources.

6.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777935

ABSTRACT

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Subject(s)
14-3-3 Proteins/genetics , Genetic Predisposition to Disease , Glutamate Plasma Membrane Transport Proteins/genetics , Spasms, Infantile/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Excitatory Amino Acid Transporter 2 , Exome/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Phenotype , Young Adult
7.
Pediatr Neurol ; 75: 87-90, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28811059

ABSTRACT

BACKGROUND: Pathogenic heterozygous variants in the ATP1A2 gene have most commonly been associated with familial hemiplegic migraine. However, a wide spectrum of phenotypes that include alternating hemiplegia of childhood and epilepsy have been described. PATIENT DESCRIPTION: We describe a boy who presented at age three months with a complex phenotype that included epilepsy, nonepileptic paroxysmal events, and recurrent hemiplegia. Magnetic resonance imaging demonstrated unilateral cortical edema during a severe episode of hemiplegia that was followed by a persistent mild hemiparesis. RESULTS: Whole-exome sequencing identified a previously reported ATP1A2 missense variant (p.Arg548Cys) classified as pathogenic and a novel missense variant (p.Arg1008Trp) classified as a variant of uncertain significance. After this genetic diagnosis, treatment with flunarizine was initiated and no further episodes of hemiplegia have occurred. CONCLUSIONS: This is only the second report of compound heterozygosity of the ATP1A2 gene. It demonstrates the spectrum of paroxysmal neurological events that can arise as a result of ATP1A2 variants, with unique features overlapping alternating hemiplegia of childhood, hemiplegic migraine, and epilepsy. This child illustrates the diagnostic challenges that these disorders can present and the importance of genetic diagnosis in guiding management.


Subject(s)
Epilepsy/genetics , Hemiplegia/genetics , Mutation/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Child, Preschool , Electroencephalography , Epilepsy/diagnostic imaging , Hemiplegia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Phenotype
8.
Neurol Genet ; 2(6): e120, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27872899

ABSTRACT

OBJECTIVE: We describe 2 additional patients with early-onset epilepsy with a de novo FGF12 mutation. METHODS: Whole-exome sequencing was performed in 2 unrelated patients with early-onset epilepsy and their unaffected parents. Genetic variants were assessed by comparative trio analysis. Clinical evolution, EEG, and neuroimaging are described. The phenotype and response to treatment was reviewed and compared to affected siblings in the original report. RESULTS: We identified the same FGF12 de novo mutation reported previously (c.G155A, p.R52H) in 2 additional patients with early-onset epilepsy. Similar to the original brothers described, both presented with tonic seizures in the first month of life. In the first patient, seizures responded to sodium channel blockers and her development was normal at 11 months. Patient 2 is a 15-year-old girl with treatment-resistant focal epilepsy, moderate intellectual disability, and autism. Carbamazepine (sodium channel blocker) was tried later in her course but not continued due to an allergic reaction. CONCLUSIONS: The identification of a recurrent de novo mutation in 2 additional unrelated probands with early-onset epilepsy supports the role of FGF12 p.R52H in disease pathogenesis. Affected carriers presented with similar early clinical phenotypes; however, this report expands the phenotype associated with this mutation which contrasts with the progressive course and early mortality of the siblings in the original report.

9.
Oncotarget ; 3(10): 1112-23, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23047041

ABSTRACT

Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors.These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM.


Subject(s)
Apoptosis/drug effects , Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Disulfiram/pharmacology , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Alcohol Deterrents/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Blotting, Western , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Dacarbazine/pharmacology , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Immunoenzyme Techniques , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...