Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Small ; 20(3): e2301841, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649218

ABSTRACT

Graphene nanoribbons (GNRs), a quasi-one-dimensional form of graphene, have gained tremendous attention due to their potential for next-generation nanoelectronic devices. The chemical unzipping of carbon nanotubes is one of the attractive fabrication methods to obtain single-layered GNRs (sGNRs) with simple and large-scale production.  The authors recently found that unzipping from double-walled carbon nanotubes (DWNTs), rather than single- or multi-walled, results in high-yield production of crystalline sGNRs. However, details of the resultant GNR structure, as well as the reaction mechanism, are not fully understood due to the necessity of nanoscale spectroscopy. In this regard, silver nanowire-based tip-enhanced Raman spectroscopy (TERS) is applied for single GNR analysis and investigated ribbon-to-ribbon heterogeneity in terms of defect density and edge structure generated through the unzipping process.  The authors found that sGNRs originated from the inner walls of DWNTs showed lower defect densities than those from the outer walls. Furthermore, TERS spectra of sGNRs exhibit a large variety in graphitic Raman parameters, indicating a large variation in edge structures. This work at the single GNR level reveals, for the first time, ribbon-to-ribbon heterogeneity that can never be observed by diffraction-limited techniques and provides deeper insights into unzipped GNR structure as well as the DWNT unzipping reaction mechanism.

2.
Adv Mater ; 36(5): e2305984, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37938141

ABSTRACT

Coke formation is the prime cause of catalyst deactivation, where undesired carbon wastes block the catalyst surface and hinder further reaction in a broad gamut of industrial chemical processes. Yet, the origins of coke formation and their distribution across the catalyst remain elusive, obstructing the design of coke-resistant catalysts. Here, the first-time application of tip-enhanced Raman spectroscopy (TERS) is demonstrated as a nanoscale chemical probe to localize and identify coke deposits on a post-mortem metal nanocatalyst. Monitoring coke at the nanoscale circumvents bulk averaging and reveals the local nature of coke with unmatched detail. The nature of coke is chemically diverse and ranges from nanocrystalline graphite to disordered and polymeric coke, even on a single nanoscale location of a top-down nanoprinted SiO2 -supported Pt catalyst. Surprisingly, not all Pt is an equal producer of coke, where clear isolated coke "hotspots" are present non-homogeneously on Pt which generate large amounts of disordered coke. After their formation, coke shifts to the support and undergoes long-range transport on the surrounding SiO2 surface, where it becomes more graphitic. The presented results provide novel guidelines to selectively free-up the coked metal surface at more mild rejuvenation conditions, thus securing the long-term catalyst stability.

3.
ACS Omega ; 8(41): 38386-38393, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867716

ABSTRACT

Tip-enhanced photoluminescence (TEPL) microscopy allows for the correlation of scanning probe microscopic images and photoluminescent spectra at the nanoscale level in a similar way to tip-enhanced Raman scattering (TERS) microscopy. However, due to the higher cross-section of fluorescence compared to Raman scattering, the diffraction-limited background signal generated by far-field excitation is a limiting factor in the achievable spatial resolution of TEPL. Here, we demonstrate a way to overcome this drawback by using remote excitation TEPL (RE-TEPL). With this approach, the excitation and detection positions are spatially separated, minimizing the far-field contribution. Two probe designs are evaluated, both experimentally and via simulations. The first system consists of gold nanoparticles (AuNPs) through photoinduced deposition on a silver nanowire (AgNW), and the second system consists of two offset parallel AgNWs. This latter coupler system shows a higher coupling efficiency and is used to successfully demonstrate RE-TEPL spectral mapping on a MoSe2/WSe2 lateral heterostructure to reveal spatial heterogeneity at the heterojunction.

4.
Chem Commun (Camb) ; 59(76): 11417-11420, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37671408

ABSTRACT

We report covalently patterned graphene with acetic acid as a new potential candidate for graphene-enhanced Raman scattering (GERS). Rhodamine 6G molecules in direct contact with the covalently modified region show an enormous enhancement (∼25 times) compared to the pristine region at 532 nm excitation. The GERS enhancement with respect to the layer thickness of the probed molecule, excitation wavelength, and covalently attached groups is discussed.

5.
ACS Sens ; 8(6): 2340-2347, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37219991

ABSTRACT

Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Pharmaceutical Preparations , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/therapeutic use , Endoscopy , Neoplasms/drug therapy
6.
Nanoscale ; 15(10): 4932-4939, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36786025

ABSTRACT

We report an efficient photo-induced covalent modification (PICM) of graphene by short-chain fatty acids (SCFAs) with an alkyl chain at the liquid-solid interface for spatially resolved chemical functionalization of graphene. Light irradiation on monolayer graphene under an aqueous solution of the SCFAs with an alkyl chain efficiently introduces sp3-hybridized defects, where the reaction rates of PICM are significantly higher than those in pure water. Raman and IR spectroscopy revealed that a high density of methyl, methoxy, and acetate groups is covalently attached to the graphene surface while it was partially oxidized by other oxygen-containing functional groups, such as OH and COOH. A greater downshift of the G-band in Raman spectra was observed upon the PICM with longer alkyl chains, suggesting that the charge doping effect can be controlled by the alkyl chain length of the SCFAs. The systematic research and exploration of covalent modification in SCFAs provide new insight and a potentially facile method for bandgap engineering of graphene.

7.
Nano Lett ; 23(4): 1615-1621, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36484776

ABSTRACT

Tip-enhanced Raman scattering (TERS) microscopy is an advanced technique for investigation at the nanoscale that provides topographic and chemical information simultaneously. The TERS probe plays a crucial role in the microscopic performance. In the recent past, the development of silver nanowire (AgNW) based TERS probes solved the main tip fabrication issues, such as low mechanical strength and reproducibility. However, this fabrication method still suffers from low control of the protruded length of the AgNW. In this work, a simple water-air interface electrocutting method is proposed to achieve wide controllability of the length. This water cutting method was combined with a succedent Au coating on the AgNW surface, and the probe achieved an up to 100× higher enhancement factor (EF) and a 2× smaller spatial resolution compared to pristine AgNW. Thanks to this excellent EF, the water-cut Au-coated AgNW probes were found to possess high TERS activity even in the nongap mode, enabling broad applications.

8.
J Phys Chem Lett ; 13(17): 3796-3803, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35452245

ABSTRACT

We report a facile all-optical method for spatially resolved and reversible chemical modification of a graphene monolayer. A tightly focused laser on graphene under water introduces an sp3-type chemical defect by photo-oxidation. The sp3-type defects can be reversibly restored to sp2 carbon centers by the same laser with higher intensity. The photoreduction occurs due to laser-induced local heating on the graphene. These optical methods combined with a laser direct writing technique allow photowriting and erasing of a well-defined chemical pattern on a graphene canvas with a spatial resolution of about 300 nm. The pattern is visualized by Raman mapping with the same excitation laser, enabling an optical read-out of the chemical information on the graphene. Here, we successfully demonstrate all-optical Write/Read-out/Erase of chemical functionalization patterns on graphene by simply adjusting the one-color laser intensity. The all-optical method enables flexible and efficient tailoring of physicochemical properties in nanoscale for future applications.

9.
Nanoscale ; 14(14): 5439-5446, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35322821

ABSTRACT

Tip-enhanced Raman scattering (TERS) microscopy is an advanced technique for investigation at the nanoscale because of its excellent properties, such as its label-free functionality, non-invasiveness, and ability to simultaneously provide topographic and chemical information. The probe plays a crucial role in TERS technique performance. Widely used AFM-TERS probes fabricated with metal deposition suffer from relatively low reproductivity as well as limited mapping and storage lifetime. To solve the reproducibility issue, silver nanowire (AgNW)-based TERS probes were developed, which, thanks to the high homogeneity of the liquid-phase synthesis of AgNW, can achieve high TERS performance with excellent probe reproductivity, but still present short lifetime due to probe oxidation. In this work, a simple Au coating method is proposed to overcome the limited lifetime and improve the performance of the AgNW-based TERS probe. For the Au-coating, different [Au]/[Ag] molar ratios were investigated. The TERS performance was evaluated in terms of changes in the enhancement factor (EF) and signal-to-noise ratio through multiple mappings and the storage lifetime in air. The Au-coated AgNWs exhibited higher EF than pristine AgNWs and galvanically replaced AgNWs with no remarkable difference between the two molar ratios tested. However, for longer scanning time and multiple mappings, the probes obtained with low Au concentration showed much longer-term stability and maintained a high EF. Furthermore, the Au-coated AgNW probes were found to possess a longer storage lifetime in air, allowing for long and multiple TERS mappings with one single probe.

10.
Anal Chem ; 93(12): 5037-5045, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33508936

ABSTRACT

Recently, our group introduced the use of silver nanowires (AgNWs) as novel non-invasive endoscopic probes for detecting intracellular Raman signals. This method, although innovative and promising, relies exclusively on the plasmonic waveguiding effect for signal enhancement. It, therefore, requires sophisticated operational tools and protocols, drastically limiting its applicability. Herein, an advanced strategy is offered to significantly enhance the performance of these endoscopic probes, making this approach widely accessible and versatile for cellular studies. By uniformly forming gold structures on the smooth AgNW surface via a galvanic replacement reaction, the density of the light coupling points along the whole probe surface is drastically increased, enabling high surface-enhanced Raman scattering (SERS) efficiency upon solely focusing the excitation light on the gold-etched AgNW. The applicability of these gold-etched AgNW probes for molecular sensing in cells is demonstrated by detecting site-specific and high-resolved SERS spectra of cell compartment-labeling dyes, namely, 4',6-diamidino-2-phenylindole in the nucleus and 3,3'-dioctadecyloxacarbocyanine on the membrane. The remarkable spectral sensitivity achieved provides essential structural information of the analytes, indicating the overall potential of the proposed approach for cellular studies of drug interactions with biomolecular items.


Subject(s)
Nanowires , Silver , Endoscopy , Gold , Spectrum Analysis, Raman
11.
RSC Adv ; 12(1): 389-394, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424530

ABSTRACT

Organic materials have attracted considerable attention in nonlinear optical (NLO) applications as they have several advantages over inorganic materials, including high NLO response, and fast response time as well as low-cost and easy fabrication. Lithium-containing C60 (Li@C60) is promising for NLO over other organic materials because of its strong NLO response proven by theoretical and experimental studies. However, the low purity of Li@C60 has been a bottleneck for applications in the fields of solar cells, electronics and optics. In 2010, highly purified Li@C60 was finally obtained, encouraging further studies. In this study, we demonstrate a facile method to fabricate thin films of Li@C60 and their strong NLO potential for high harmonic generation by showing its comparatively strong emission of degenerate-six-wave mixing, a fifth-order NLO effect.

12.
Chem Commun (Camb) ; 56(87): 13331-13334, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33063066

ABSTRACT

Defects influence the properties of metal-organic frameworks (MOFs), such as their storage amount and the diffusion kinetics of gas molecules. However, the spatial distribution of defects is still poorly understood due to a lack of visualization methods. Here, we present a new method using nonlinear optics (NLO) that allows the visualization of defects within MOFs.

13.
ACS Omega ; 5(20): 11547-11552, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32478244

ABSTRACT

Despite having great value across a wide variety of scientific fields, two-photon polymerizations currently suffer from two significant problems: the need for photoinitiators, which generate toxic side products, and the irreversibility of the process. Hence, the design of a versatile approach that circumvents these issues represents a major scientific challenge. Herein, we report a two-photon absorption strategy where reversible [2 + 2] cycloaddition of bis-thymines was achieved without the need for any photoinitiator. The cycloaddition and cycloreversion reactions could be induced by simply changing the irradiation wavelength, and repeated writing and erasing cycles were performed. The simplicity, reversibility, and biocompatibility of this strategy open up a whole new toolbox for applications across a wide variety of scientific fields.

14.
Nanoscale ; 12(20): 11063-11069, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32400800

ABSTRACT

Graphene, a single atomic layer of sp2 hybridized carbon, is a promising material for future devices due to its excellent optical and electrical properties. Nevertheless, for practical applications, it is essential to deposit patterned metals on graphene in the micro and nano-meter scale in order to inject electrodes or modify the 2D film electrical properties. However, conventional methods for depositing patterned metals such as lift-off or etching leave behind contamination. This contamination has been demonstrated to deteriorate the interesting properties of graphene such as its carrier mobility. Therefore, to fully exploit the unique properties of graphene, the controlled and nano-patterned deposition of metals on graphene films without the use of a sacrificial resist is of significant importance for graphene film functionalization and contact deposition. In this work, we demonstrate a practical and low-cost optical technique of direct deposition of metal nano-patterned structures without the need for a sacrificial lift-off resist. The technique relies on the laser induced reduction of metal ions on a graphene film. We demonstrate that this deposition is optically driven, and the resolution is limited only by the diffraction limit of the light source being used. Patterned metal features as small as 270 nm in diameter are deposited using light with a wavelength of 532 nm and a numerical aperture of 1.25. Deposition of different metals such as Au, Ag, Pd, Pb and Pt is shown. Additionally, change in the Fermi level of the graphene film through the nano-patterned metal is demonstrated through the electrical characterization of four probe field effect transistors.

15.
Nano Lett ; 20(4): 2460-2467, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32155085

ABSTRACT

Silver nanowires have attracted considerable attention as subdiffraction limited diameter waveguides in a variety of applications including cell endoscopy and photonic integrated circuitry. Optical signal transport occurs by coupling light into propagating surface plasmons, which scatter back into light further along the wire. However, these interconversions only occur efficiently at wire ends, or at defects along the wire, which are not controlled during synthesis. Here, we overcome this limitation, demonstrating the visible laser light-induced fabrication of gold nanostructures at desired positions on silver nanowires, and their utility as efficient in/out coupling points for light. The gold nanostructures grow via plasmon-induced reduction of Au(III) and are shown to be excellent "hotspots" for surface-enhanced Raman scattering.


Subject(s)
Gold/chemistry , Nanostructures/chemistry , Nanowires/chemistry , Silver/chemistry , Spectrum Analysis, Raman/instrumentation , Equipment Design , Light , Nanostructures/ultrastructure , Nanowires/ultrastructure , Surface Plasmon Resonance/instrumentation , Surface Properties
16.
Chem Commun (Camb) ; 55(77): 11630-11633, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31506656

ABSTRACT

We report a simple method to control the end shape of silver nanowires by adding pure water in the conventional polyol synthesis. The use of 0.2-0.4% (v/v) water in ethylene glycol as a solvent provides pencil-like silver nanowires with sharp ends in a high yield. We have demonstrated remote excitation of SHG on the sharp nanowires, promising a point light source for super resolution microscopy.

17.
J Phys Chem B ; 122(51): 12375-12385, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30507183

ABSTRACT

Phase separation dynamics of a water/2-butoxyethanol (2BE) mixture was studied with newly developed time-resolved structured illumination microscopy (SIM). Interestingly, an employed hydrophobic fluorescent probe for SIM showed spectral shifts up to 500 ns after a laser-induced temperature jump, which suggests 2BE micellar-like aggregates become more hydrophobic at the initial stage of phase separation. This hydrophobic environment in 2BE aggregates, probably due to the ejection of water molecules, continued up to at least 10 µs. Time-resolved SIM and previously reported light scattering data clearly showed that the size of a periodic structure remained constant (ca. 300 nm) from 3 to 10 µs, and then the growth of periodic structures having the self-similarity started. We think that the former and the latter processes correspond to "early stage" (concentration growth) and "late stage" (size growth), respectively, in phase separation dynamics. Here we suggest that, in the early stage, the entity to bear 2BE phase be water-poor 2BE aggregates, and the number density of these aggregates would simply increase in time.

18.
J Phys Chem Lett ; 9(24): 7117-7122, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30484654

ABSTRACT

TERS is a powerful tool for nanoscale optical characterization of surfaces. However, even after 20 years of development, the parameters for optimal TERS tips are still up for debate. As a result, routine measurements on bulk or dielectric substrates remain exceptionally challenging. Herein we help to alleviate this by using electrical cutting to strategically modify silver nanowire TERS probes. Following cutting, the tips present a large, spherical apex and are often nanostructured with numerous nanoparticles, which we argue improve light collection and optical coupling. This doubles TERS signals on a highly enhancing, gap-mode substrate compared to our standard nanowire tips while maintaining a high reproducibility and resolution. More interestingly, on a dielectric substrate (graphene on SiO2) the tips give ∼7× higher signals than our standard tips. Further investigations point to the nonlocal nature of the enhancement using standard, smooth TERS probes without gap-mode, making such nanostructuring highly beneficial in these cases.

19.
ACS Photonics ; 5(1): 151-157, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-30364720

ABSTRACT

A cyanine dye (PIC) was occluded into two 1D-nanopoporus Mg-containing aluminophosphates with different pore size (MgAPO-5 and MgAPO-36 with AFI and ATS zeolitic structure types, with cylindrical channels of 7.3 Å diameter and elliptical channels of 6.7 Å × 7.5 Å, respectively) by crystallization inclusion method. Different J-aggregates are photophysically characterized as a consequence of the different pore size of the MgAPO frameworks, with emission bands at 565 nm and at 610 nm in MgAPO-5 and MgAPO-36, respectively. Computational results indicate a more linear geometry of the J-aggregates inside the nanochannels of the MgAPO-36 sample than those in MgAPO-5, which is as a consequence of the more constrained environment in the former. For the same reason, the fluorescence of the PIC monomers at 550 nm is also activated within the MgAPO-36 channels. Owing to the strategic distribution of the fluorescent PIC species in MgAPO-36 crystals (monomers at one edge and J-aggregates with intriguing emission properties at the other edge) an efficient and one-directional antenna system is obtained. The unidirectional energy transfer process from monomers to J-aggregates is demonstrated by remote excitation experiments along tens of microns of distance.

20.
Dalton Trans ; 47(31): 10646-10653, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-29808225

ABSTRACT

Lanthanides, holmium(iii), dysprosium(iii), and terbium(iii), were coordinated to an amphiphilic DOTA bis-coumarin derivative and then further assembled with an amphiphilic europium(iii) DTPA bis-coumarin derivative into mono-disperse micelles. The self-assembled micelles were characterized and assessed for their potential as bimodal contrast agents for high field magnetic resonance and optical imaging applications. All micelles showed a high transverse relaxation (r2) of 46, 34, and 30 s-1 mM-1 at 500 MHz and 37 °C for Dy(iii), Ho(iii) and Tb(iii), respectively, which is a result of the high magnetic moment of these lanthanides and the long rotational correlation time of the micelles. The quantum yield in aqueous solution ranged from 1.8% for Tb/Eu to 1.4% for Dy/Eu and 1.0% for the Ho/Eu micelles. Multi-photon excited emission spectroscopy has shown that due to the two-photon absorption of the coumarin chromophore the characteristic Eu(iii) emission could be observed upon excitation at 800 nm, demonstrating the usefulness of the system for in vivo fluorescence imaging applications. To the best of our knowledge, this is the first example reporting the potential of a holmium(iii) chelate as a negative MRI contrast agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...