Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(27): 31406-31417, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34185501

ABSTRACT

The use of ultraviolet (UV) and blue irradiation to sterilize surfaces is well established, but commercial applications would be enhanced if the light source is replaced with ambient light. In this paper, it is shown that nanofibers can be explored as an alternative methodology to UV and blue irradiation for bacterial inactivation. It is demonstrated that this is indeed possible using spun nanofibers of poly[lactic-co-(glycolic acid)] (PLGA). This work shows that PLGA spun scaffolds can promote photoinactivation of Staphylococcus aureus and Escherichia coli bacteria with ambient light or with laser irradiation at 630 nm. With the optimized scaffold composition of PLGA85:15 nanofibers, the minimum intensity required to kill the bacteria is much lower than in antimicrobial blue light applications. The enhanced effect introduced by PLGA scaffolds is due to their nanofiber structures since PLGA spun nanofibers were able to inactivate both S. aureus and E. coli bacteria, but cast films had no effect. These findings pave the way for an entirely different method to sterilize surfaces, which is less costly and environmentally friendly than current procedures. In addition, the scaffolds could also be used in cancer treatment with fewer side effects since photosensitizers are not required.


Subject(s)
Electricity , Escherichia coli/physiology , Microbial Viability/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Staphylococcus aureus/physiology , Ultraviolet Rays , Escherichia coli/drug effects , Escherichia coli/radiation effects , Microbial Viability/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/radiation effects
2.
J Phys Chem A ; 120(49): 9702-9706, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973811

ABSTRACT

We studied the absorption line-shape of poly(p-phenylenevinylene) (PPV) films deposited via spin coating and Langmuir-Blodgett techniques with the intent of identifying the conjugation length distribution in these two types of films, a key morphological aspect of conjugated polymer films. We treated the excitons in the polymer as independent oligomer excitons and modeled the absorption spectra of the individual oligomers using simple expressions for the oligomer size dependence of the gap energy, the line-broadening factor, the transition dipole moment and the Huang-Rhys parameter. We validated these expressions by independent measurements on phenyl-based oligomers and Density Functional Theory calculations. Our results show clear evidence that, for both types of PPV films, the conjugation length distribution depends exponentially on the segment size. Our results also set a lower limit, of about ten repeat units, for the maximum exciton length of three different phenyl-based oligomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...