Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 344: 118475, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37406491

ABSTRACT

Second generation biofuel crop Miscanthus x giganteus (Mxg) was studied as a candidate for petroleum hydrocarbons (PHs) contaminated soil phytomanagement. The soil was polluted by diesel in wide concentration gradient up to 50 g⋅kg-1 in an ex-situ pot experiment. The contaminated soil/plant interactions were investigated using plant biometric and physiological parameters, soil physico-chemical and microbial community's characteristics. The plant parameters and chlorophyll fluorescence indicators showed an inhibitory effect of diesel contamination; however much lower than expected from previously published results. Moreover, lower PHs concentrations (5 and 10 g⋅kg-1) resulted in positive reinforcement of electron transport as a result of hormesis effect. The soil pH did not change significantly during the vegetation season. The decrease of total organic carbon was significantly lower in planted pots. Soil respiration and dehydrogenases activity increased with the increasing contamination indicating ongoing PHs biodegradation. In addition, microbial biomass estimated by phospholipid fatty acids increased only at higher PHs concentrations. Higher dehydrogenases values were obtained in planted pots compared to unplanted. PHs degradation followed the first-order kinetics and for the middle range of contamination (10-40 g⋅kg-1) significantly lower PHs half-lives were determined in planted than unplanted soil pointing on phytoremediation. Diesel degradation was in range 35-70 % according to pot variant. Results confirmed the potential of Mxg for diesel contaminated soils phytomanagement mainly in PHs concentrations up to 20 g⋅kg-1 where phytoremediation was proved, and biomass yield was reduced only by 29 %.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/analysis , Poaceae/metabolism , Plants/metabolism , Hydrocarbons/metabolism , Soil , Oxidoreductases/metabolism
2.
ACS Appl Nano Mater ; 5(12): 17956-17968, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36583119

ABSTRACT

Nanoscale cerium-bismuth oxides/oxynitrates were prepared by a scalable low-temperature method at ambient pressure using water as the sole solvent. Solid solutions were formed up to a 1:1 Ce/Bi molar ratio, while at higher doping levels, bismuth oxynitrate photocatalysts with a pronounced layered structure were formed. Bismuth caused significant changes in the structure and surface properties of nanoceria, such as the formation of defects, oxygen-containing surface groups, and Lewis and Brønsted acid sites. The prepared bifunctional adsorbents/photocatalysts were efficient in the removal of toxic organophosphate (methyl paraoxon) from water by reactive adsorption followed by photocatalytic decomposition of the parent compound and its degradation product (p-nitrophenol). Bi-doped ceria also effectively adsorbed and photodegraded the endocrine disruptors bisphenols A and S and outperformed pure ceria and the P25 photocatalyst in terms of efficiency, durability, and long-term stability. The very low toxicity of Bi-nanoceria to mammalian cells, aquatic organisms, and bacteria has been demonstrated by comprehensive in vivo/in vitro testing, which, in addition to its simple "green" synthesis, high activity, and durability, makes Bi-doped ceria promising for safe use in abatement of toxic chemicals.

3.
Ecotoxicol Environ Saf ; 224: 112630, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34392149

ABSTRACT

The second generation energy crop Miscanthus x giganteus (Mxg) was cultivated in pots with mixtures of clean and petroleum industry contaminated soil affected by petroleum, Pb, Zn contamination and high salinity. The survival rate reached 100%, nevertheless the biomass parameters were negatively affected even in the lowest proportion of contaminated soil. In the lowest contamination, where the plant grew still quite successfully, C10-C40 degradation was significantly enhanced compared to the unplanted control with degradation of 58 ± 14%. The plant contribution to aliphatics degradation was significantly correlated with biomass, thus it was negligible in higher contamination. A similar pattern was documented in development of the soil bacterial community. The shift in community structure after Mxg cultivation was observed mainly in the soil with the lowest contaminant proportion, though an increase of bacterial diversity in the miscanthus rhizosphere was observed in all cases. Relative abundance of Actinobacteria was reduced on behalf of several less abundant phyla (Verrucomicrobia, Bacterioides, Acidobacteria). The majority of genera identified as potential petroleum degraders (Pseudomonas, Shinella, Altererythrobacter, Azospirillum, Mesorhizobium, Dyella) were more abundant in contaminated soil with miscanthus, suggesting that Mxg could be a promising crop for phytomanagement of petroleum contaminated soils but salt phytotoxicity needs to be mitigated first.

4.
J Environ Qual ; 50(5): 1220-1232, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34273114

ABSTRACT

Military activities can contaminate productive land with potentially toxic substances. The most common trace metal contaminant on military bases is lead (Pb). A field experiment was begun in 2016 at Fort Riley, KS, in an area with total soil Pb concentrations ranging from 900 to 1,500 mg kg-1 and near-neutral pH. The main objectives were to test the potential of Miscanthus sp. for phytostabilization of the site and to evaluate the effects of soil amendments on Miscanthus growth, soil-plant Pb transfer, bioaccessibility of soil Pb, and soil health. The experimental design was a randomized complete block, with five treatments and four replications. Treatments were (a) existing vegetation; (b) Miscanthus planted in untilled soil, no amendments; (c) Miscanthus planted in tilled soil; (d) Miscanthus planted in tilled soil amended with inorganic P (triple superphosphate applied at 5:3 Pb:P); and (e) Miscanthus planted in tilled soil amended with organic P (Class B biosolids applied at 45 Mg ha-1 ). Tilling and soil amendments increased dry matter yields only in the establishment year. Total Pb uptake, plant tissue Pb concentration, and soil Pb bioaccessibility were significantly less in the Miscanthus plots amended with biosolids than the Miscanthus plots with no added P across all 3 yr. Enzyme activities, organic carbon, and microbial biomass were also greater in biosolids-treated plots. Results show that planting-time addition of soil amendments to Pb-contaminated soil supported Miscanthus establishment, stabilized and reduced bioaccessibility of soil Pb, reduced concentration and uptake of Pb by Miscanthus, and enhanced soil health parameters.


Subject(s)
Metals, Heavy , Military Personnel , Soil Pollutants , Biodegradation, Environmental , Humans , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
5.
Sensors (Basel) ; 21(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466906

ABSTRACT

Glucose belongs among the most important substances in both physiology and industry. Current food and biotechnology praxis emphasizes its on-line continuous monitoring and regulation. These provoke increasing demand for systems, which enable fast detection and regulation of deviations from desired glucose concentration. We demonstrated control of glucose concentration by feedback regulation equipped with in situ optical fiber glucose sensor. The sensitive layer of the sensor comprises oxygen-dependent ruthenium complex and preimmobilized glucose oxidase both entrapped in organic-inorganic polymer ORMOCER®. The sensor was placed in the laboratory bioreactor (volume 5 L) to demonstrate both regulations: the control of low levels of glucose concentrations (0.4 and 0.1 mM) and maintenance of the glucose concentration (between 2 and 3.5 mM) during stationary phase of cultivation of Saccharomyces cerevisiae. Response times did not exceed 6 min (average 4 min) with average deviation of 4%. Due to these regulation characteristics together with durable and long-lasting (≥2 month) sensitive layer, this feedback regulation system might find applications in various biotechnological processes such as production of low glucose content beverages.


Subject(s)
Saccharomyces cerevisiae , Feedback , Glucose , Glucose Oxidase , Optical Fibers
7.
Biology (Basel) ; 9(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32972004

ABSTRACT

Use of plant growth-promoting bacteria (PGPB) for cultivation of the biofuel crop Miscanthus × giganteus (Mxg) in post-military and post-mining sites is a promising approach for the bioremediation of soils contaminated by metals. In the present study, PGPB were isolated from contaminated soil and screened for tolerance against abiotic stresses caused by salinity, pH, temperature, and lead (Pb). Selected strains were further assessed and screened for plant growth-promoting attributes. The isolate showing the most potential, Bacillus altitudinis KP-14, was tested for enhancement of Mxg growth in contaminated soil under greenhouse conditions. It was found to be highly tolerant to diverse abiotic stresses, exhibiting tolerance to salinity (0-15%), pH (4-8), temperature (4-50 °C), and Pb (up to 1200 ppm). The association of B. altitudinis KP-14 with Mxg resulted in a significant (p ≤ 0.001) impact on biomass enhancement: the total shoot and dry root weights were significantly enhanced by 77.7% and 55.5%, respectively. The significant enhancement of Mxg biomass parameters by application of B. altitudinis KP-14 strongly supports the use of this strain as a biofertilizer for the improvement of plant growth in metal-contaminated soils.

8.
Sensors (Basel) ; 20(11)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517218

ABSTRACT

In this study, we show the repetitive detection of toluene on a tapered optical fiber element (OFE) with an attached layer of Pseudomonas putida TVA8 bioluminescent bioreporters. The bioluminescent cell layer was attached on polished quartz modified with (3-aminopropyl)triethoxysilane (APTES). The repeatability of the preparation of the optical probe and its use was demonstrated with five differently shaped OFEs. The intensity of measured bioluminescence was minimally influenced by the OFE shape, possessing transmittances between 1.41% and 5.00%. OFE probes layered with P. putida TVA8 were used to monitor liquid toluene over a two-week period. It was demonstrated that OFE probes layered with positively induced P. putida TVA8 bioreporters were reliable detectors of toluene. A toluene concentration of 26.5 mg/L was detected after <30 min after immersion of the probe in the toluene solution. Additional experiments also immobilized constitutively bioluminescent cells of E. coli 652T7, on OFEs with polyethyleneimine (PEI). These OFEs were repetitively induced with Lauria-Bertani (LB) nutrient medium. Bioluminescence appeared 15 minutes after immersion of the OFE in LB. A change in pH from 7 to 6 resulted in a decrease in bioluminescence that was not restored following additional nutrient inductions at pH 7. The E. coli 652T7 OFE probe was therefore sensitive to negative influences but could not be repetitively used.


Subject(s)
Biosensing Techniques , Hydrocarbons, Aromatic/analysis , Luminescent Measurements , Escherichia coli , Optical Fibers , Pseudomonas putida , Toluene/analysis
9.
Sensors (Basel) ; 20(11)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498220

ABSTRACT

Mercury is a ubiquitous environmental pollutant of dominantly anthropogenic origin. A critical concern for human health is the introduction of mercury to the food chain; therefore, monitoring of mercury levels in agricultural soil is essential. Unfortunately, the total mercury content is not sufficiently informative as mercury can be present in different forms with variable bioavailability. Since 1990, the use of bioreporters has been investigated for assessment of the bioavailability of pollutants; however, real contaminated soils have rarely been used in these studies. In this work, a bioassay with whole-cell bacterial bioreporter Escherichia coli ARL1 was used for estimation of bioavailable concentration of mercury in 11 soil samples. The bioreporter emits bioluminescence in the presence of Hg(II). Four different pretreatments of soil samples prior to the bioassay were tested. Among them, laccase mediated extraction was found to be the most suitable over water extraction, alkaline extraction, and direct use of water-soil suspensions. Nevertheless, effect of the matrix on bioreporter signal was found to be severe and not possible to be completely eliminated by the method of standard addition. In order to elucidate the matrix role, influences of humic acid and selected metal ions present in soil on the bioreporter signal were tested separately in laboratory solutions. Humic acids were found to have a positive effect on the bioreporter growth, but a negative effect on the measured bioluminescence, likely due to shading and Hg binding resulting in decreased bioavailability. Each of the tested metal ions solutions affected the bioluminescence signal differently; cobalt (II) positively, iron (III) negatively, and the effects of iron (II) and nickel (II) were dependent on their concentrations. In conclusion, the information on bioavailable mercury estimated by bioreporter E. coli ARL1 is valuable, but the results must be interpreted with caution. The route to functional bioavailability bioassay remains long.


Subject(s)
Biosensing Techniques , Humic Substances , Mercury , Soil Pollutants , Environmental Monitoring , Escherichia coli , Mercury/analysis , Soil , Soil Pollutants/analysis
10.
Plants (Basel) ; 9(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033420

ABSTRACT

Miscanthus x giganteus (Mxg) is a promising second-generation biofuel crop with high production of energetic biomass. Our aim was to determine the level of plant stress of Mxg grown in poor quality soils using non-invasive physiological parameters and to test whether the stress could be reduced by application of plant growth regulators (PGRs). Plant fitness was quantified by measuring of leaf fluorescence using 24 indexes to select the most suitable fluorescence indicators for quantification of this type of abiotic stress. Simultaneously, visible stress signs were observed on stems and leaves and differences in variants were revealed also by microscopy of leaf sections. Leaf fluorescence analysis, visual observation and changes of leaf anatomy revealed significant stress in all studied subjects compared to those cultivated in good quality soil. Besides commonly used Fv/Fm (potential photosynthetic efficiency) and P.I. (performance index), which showed very low sensitivity, we suggest other fluorescence parameters (like dissipation, DIo/RC) for revealing finer differences. We can conclude that measurement of leaf fluorescence is a suitable method for revealing stress affecting Mxg in poor soils. However, none of investigated parameters proved significant positive effect of PGRs on stress reduction. Therefore, direct improvement of soil quality by fertilization should be considered for stress reduction and improving the biomass quality in this type of soils.

11.
Rev Environ Health ; 34(3): 283-291, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31318698

ABSTRACT

The impact of plant growth regulators (PGRs) "Stimpo" and "Regoplant" on Miscanthus x giganteus (Mxg) biomass parameters was investigated when the plant was grown in military soils with different properties from Dolyna, Ukraine and Hradcany, Czech Republic. The results showed that PGRs positively influenced the biomass parameters when the plant was grown in soil in Dolyna with good agricultural characteristics, the influence of "Regoplant" was higher and the best results were obtained with combined treatment: application to rhizomes before planting and spraying on the biomass during vegetation. Using of PGRs did not improve the biomass parameters when the plant was grown in poor soil in Hradcany. In parallel the peculiarities of the metals uptake process were studied for the following metals: chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), strontium (Sr) and lead (Pb). The uptake behavior of the monitored elements differed based on the soil quality. According to the bioconcentration factor uptake of the abiogenic elements, Cr and Pb, was dominant in the plant roots in both soils, whereas Ni was not detected in any plant tissues. The behavior of biogenic elements (Mn, Cu, Zn) and their analogs (Sr) was different. Those elements were more intensively taken up in shoot tissues in low-nutrient sandy Hradcany soils, while they were mainly taken up in plant roots in fertile Dolyna soils. The unusual behavior of biogenic elements in the low-nutrient soils may be explained by the effect of stress. However, more research is needed focused mainly on soil properties and nutrient availability in order to confirm or disprove this hypothesis and to explore the cause of the stress. The summarized results here show that soil properties influenced Mxg biomass parameters, affected the uptake behavior of metals significantly and tested PGRs cannot be utilized universally in the production of Mxg in the poor military soils.


Subject(s)
Biomass , Metals, Heavy/metabolism , Plant Growth Regulators/metabolism , Poaceae/physiology , Soil Pollutants/metabolism , Soil/chemistry , Bioaccumulation , Czech Republic , Military Personnel , Poaceae/growth & development , Poaceae/metabolism , Ukraine
12.
Environ Pollut ; 249: 330-337, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30903832

ABSTRACT

This study aims to summarize results on potential phytomanagement of two metal(loid)-polluted military soils using Miscanthus x giganteus. Such an option was tested during 2-year pot experiments with soils taken from former military sites in Sliac, Slovakia and Kamenetz-Podilsky, Ukraine. The following elements were considered: As, Cu, Fe, Mn, Pb, Sr, Ti, Zn and Zr. M. x giganteus showed good growth at both military soils with slightly higher maximum shoot lengths in the second year of vegetation. Based on Principal Component Analysis similarities of metal(loid) uptake by roots, stems and leaves were summarized. Major part of the elements remained in M. x giganteus roots and rather limited amounts moved to the aerial parts. Levels taken up decreased in the second vegetation year. Dynamics of foliar metal(loid) concentrations divided the elements in two groups: essential elements required for metabolism (Fe, Mn, Cu, and Zn) and non-essential elements without any known metabolic need (As, Sr, Ti, and Zr). Fe, Mn, Ti and Sr showed similar S-shaped uptake curve in terms of foliar concentrations (likely due to dilution in growing biomass), while Cu exhibited a clear peak mid-season. Behavior of Zn was in between. Foliar Zr and As concentrations were below detection limit. The results illustrated a good potential of M. x giganteus for safely growing on metal-polluted soils taken from both military localities.


Subject(s)
Biofuels , Environmental Restoration and Remediation/methods , Soil Pollutants/analysis , Biodegradation, Environmental , Biomass , Environmental Pollutants/analysis , Metals/analysis , Plant Roots/metabolism , Poaceae/metabolism , Slovakia , Soil
13.
Mater Sci Eng C Mater Biol Appl ; 96: 807-813, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606594

ABSTRACT

Stable antimicrobial nanofibrous membrane for air filtration based on polyamide 6 (hereafter PA6) modified by 1-dodecyltrimethylammonium bromide (DTAB) has been prepared by electrospinning using one-step technology, i.e. with modifying antimicrobial agent dissolved in spinning solution. Stability of antibacterial membrane function has been tested by air-blowing test to prove the permanency of chemical composition and antibacterial activity. X-ray diffraction, high-resolution scanning electron microscopy (HRSEM) revealed the effect of modifying agent on structure and morphology of PA6 nanofibres. X-ray photoelectron spectroscopy, electrokinetic analysis and antibacterial tests proved the stability of chemical composition and antibacterial activity after air-blowing tests. Special air-blowing device has been constructed for this purpose. The results prove the applicability so prepared membrane for a long-term air-conditioning.


Subject(s)
Air Filters , Anti-Infective Agents/chemistry , Caprolactam/analogs & derivatives , Membranes, Artificial , Nanofibers/chemistry , Polymers/chemistry , Caprolactam/chemistry
14.
Materials (Basel) ; 9(6)2016 Jun 15.
Article in English | MEDLINE | ID: mdl-28773598

ABSTRACT

Living cells of the lux-based bioluminescent bioreporter Pseudomonas putida TVA8 were encapsulated in a silica hydrogel attached to the distal wider end of a tapered quartz fiber. Bioluminescence of immobilized cells was induced with toluene at high (26.5 mg/L) and low (5.3 mg/L) concentrations. Initial bioluminescence maxima were achieved after >12 h. One week after immobilization, a biofilm-like layer of cells had formed on the surface of the silica gel. This resulted in shorter response times and more intensive bioluminescence maxima that appeared as rapidly as 2 h after toluene induction. Considerable second bioluminescence maxima were observed after inductions with 26.5 mg toluene/L. The second and third week after immobilization the biosensor repetitively and semiquantitatively detected toluene in buffered medium. Due to silica gel dissolution and biofilm detachment, the bioluminescent signal was decreasing 20-32 days after immobilization and completely extinguished after 32 days. The reproducible formation of a surface cell layer on the wider end of the tapered optical fiber can be translated to various whole cell bioluminescent biosensor devices and may serve as a platform for in-situ sensors.

15.
Sensors (Basel) ; 15(10): 25208-59, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26437407

ABSTRACT

This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.


Subject(s)
Biological Assay/instrumentation , Biosensing Techniques/instrumentation , Fiber Optic Technology/instrumentation , Optical Fibers , Chemistry Techniques, Analytical/instrumentation , Equipment Design , Humans
16.
Sensors (Basel) ; 15(2): 3426-34, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25690547

ABSTRACT

The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications.


Subject(s)
Fatty Acids/chemistry , Hydrogels/chemistry , Paracoccus denitrificans/metabolism , Phospholipids/chemistry , Biosensing Techniques
17.
ScientificWorldJournal ; 2014: 642427, 2014.
Article in English | MEDLINE | ID: mdl-24672346

ABSTRACT

Possible enhancement of biodegradation of petroleum hydrocarbons in agricultural soil after tank truck accident (~5000 mg/kg dry soil initial concentration) by bioaugmentation of diesel degrading Pseudomonas fluorescens strain and addition of abiotic additives (humates, zeolite) was studied in a 9-month pot experiment. The biodegradation process was followed by means of analytical parameters (hydrocarbon index expressed as content of C10-C40 aliphatic hydrocarbons, ratio pristane/C17, and total organic carbon content) and characterization of soil microbial community (content of phospholipid fatty acids (PLFA) as an indicator of living microbial biomass, respiration, and dehydrogenase activity). The concentration of petroleum hydrocarbons (C10-C40) was successfully reduced by ~60% in all 15 experiment variants. The bioaugmentation resulted in faster hydrocarbon elimination. On the contrary, the addition of humates and zeolite caused only a negligible increase in the degradation rate. These factors, however, affected significantly the amount of PLFA. The humates caused significantly faster increase of the total PLFA suggesting improvement of the soil microenvironment. Zeolite caused significantly slower increase of the total PLFA; nevertheless it aided in homogenization of the soil. Comparison of microbial activities and total PLFA revealed that only a small fraction of autochthonous microbes took part in the biodegradation which confirms that bioaugmentation was the most important treatment.


Subject(s)
Agriculture , Biodegradation, Environmental , Gasoline , Soil , Zeolites/chemistry , Humans , Kinetics , Soil Microbiology
18.
Environ Toxicol Chem ; 32(10): 2412-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23881720

ABSTRACT

A set of 69 concentration-response curves from 5 acute ecotoxicity assays was fitted with a 2-parameter logistic equation. High correlation between values of regression parameters suggested similar slopes of the curves. This enabled derivation of the empirical single-parameter logistic equation with the sole median effective concentration (EC50) parameter. Such an equation might be useful in the evaluation of lower-quality (preliminary) experimental data and for the reduction of the number of test organisms and of testing costs.


Subject(s)
Environmental Pollutants/toxicity , Logistic Models , Toxicity Tests, Acute , Aliivibrio fischeri/drug effects , Animals , Chlorophyta/drug effects , Daphnia/drug effects , Poecilia , Potassium Dichromate/toxicity , Reference Standards , Toxicity Tests, Acute/standards
19.
Folia Microbiol (Praha) ; 58(2): 135-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23011951

ABSTRACT

The content of phospholipid fatty acids (PLFA) was determined in samples of polyvinyl alcohol lenses (Lentikats Biocatalyst, LB) with encapsulated Paracoccus denitrificans withdrawn during long-term denitrification experiments. The total PLFA content correlated highly with specific denitrification activities of LB as well as biomass estimation based on image analyses of microscopic photos. The results confirmed the applicability of PLFA determination for estimation of the amount of living encapsulated microbial biomass during biotechnological applications.


Subject(s)
Bacteria/isolation & purification , Biotechnology/methods , Fatty Acids/metabolism , Phospholipids/metabolism , Bacterial Load , Drug Compounding/methods , Microbial Viability
20.
Sensors (Basel) ; 12(2): 1544-71, 2012.
Article in English | MEDLINE | ID: mdl-22438725

ABSTRACT

Initially described in 1990, Pseudomonas fluorescens HK44 served as the first whole-cell bioreporter genetically endowed with a bioluminescent (luxCDABE) phenotype directly linked to a catabolic (naphthalene degradative) pathway. HK44 was the first genetically engineered microorganism to be released in the field to monitor bioremediation potential. Subsequent to that release, strain HK44 had been introduced into other solids (soils, sands), liquid (water, wastewater), and volatile environments. In these matrices, it has functioned as one of the best characterized chemically-responsive environmental bioreporters and as a model organism for understanding bacterial colonization and transport, cell immobilization strategies, and the kinetics of cellular bioluminescent emission. This review summarizes the characteristics of P. fluorescens HK44 and the extensive range of its applications with special focus on the monitoring of bioremediation processes and biosensing of environmental pollution.


Subject(s)
Biological Assay/instrumentation , Biosensing Techniques/instrumentation , Environmental Monitoring/instrumentation , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/physiology , Spectrometry, Fluorescence/instrumentation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...