Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ChemistryOpen ; 10(8): 748-755, 2021 08.
Article in English | MEDLINE | ID: mdl-34351082

ABSTRACT

We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII ) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.

2.
J Phys Chem Lett ; 12(2): 869-875, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33428409

ABSTRACT

The nature of optical excitations and the spatial extent of excitons in organic semiconductors, both of which determine exciton diffusion and carrier mobilities, are key factors for the proper understanding and tuning of material performances. Using a combined experimental and theoretical approach, we investigate the excitonic properties of meso-tetraphenyl porphyrin-Zn(II) crystals. We find that several bands contribute to the optical absorption spectra, beyond the four main ones considered here as the analogue to the four frontier molecular orbitals of the Gouterman model commonly adopted for the isolated molecule. By using many-body perturbation theory in the GW and Bethe-Salpeter equation approach, we interpret the experimental large optical anisotropy as being due to the interplay between long- and short-range intermolecular interactions. In addition, both localized and delocalized excitons in the π-stacking direction are demonstrated to determine the optical response, in agreement with recent experimental observations reported for organic crystals with similar molecular packing.

3.
Appl Opt ; 59(27): 8175-8181, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32976398

ABSTRACT

The possibility of following electrochemical processes in situ and in real time using optical techniques is important in view of shining a light on the chemical processes at the surface. The interest grows if the optical apparatus is compact and can be employed in industrial quality-check protocols. Here, we show how graphite anion intercalation-an important chemical process to massively produce graphene flakes-can be monitored by a UV-vis spectrometer when the graphite works as an electrode immersed inside the electrochemical cell. Important information on the reversibility or quasi-reversibility of the reaction shows a clear visualization in optical color maps.

4.
Nanomaterials (Basel) ; 10(4)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290503

ABSTRACT

Bacterial cellulose nanocrystals (BCNCs) obtained by enzymatic hydrolysis have been loaded in pullulan biopolymer for use as nanoparticles in the generation of high-oxygen barrier coatings intended for food packaging applications. Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was hydrolyzed by two different enzymatic treatments, i.e., using endo-1,4-ß-glucanases (EGs) from Thermobifida halotolerans and cellulase from Trichoderma reesei. The hydrolytic activity was compared by means of turbidity experiments over a period of 145 h, whereas BCNCs in their final state were compared, in terms of size and morphology, by atomic force microscopy (AFM) and dynamic light scattering (DLS). Though both treatments led to particles of similar size, a greater amount of nano-sized particles (≈250 nm) were observed in the system that also included cellulase enzymes. Unexpectedly, transmission electron microscopy (TEM) revealed that cellulose nanoparticles were round-shaped and made of 4-5 short (150-180 nm) piled whiskers. Pullulan/BCNCs nanocomposite coatings allowed an increase in the overall oxygen barrier performance, of more than two and one orders of magnitude (≈0.7 mL·m-2·24 h-1), of pure polyethylene terephthalate (PET) (≈120 mL·m-2·24 h-1) as well as pullulan/coated PET (≈6 mL·m-2·24 h-1), with no significant difference between treatments (hydrolysis mediated by EGs or with the addition of cellulase). BCNCs obtained by enzymatic hydrolysis have the potential to generate high oxygen barrier coatings for the food packaging industry.

5.
Phys Chem Chem Phys ; 21(16): 8482-8488, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30957123

ABSTRACT

Controlling self-organization of small organic molecules in nanostructures with a desired shape and size is one of the main challenges in organic nanoelectronics. Here, a strategy for selectively growing uniaxially aligned nanowires of meso-tetraphenyl porphyrin-Zn(ii) (ZnTPP) is presented. ZnTPP is deposited on an organic single crystal, namely potassium hydrogen phthalate, by organic molecular beam epitaxy. The films typically display a rather rich surface morphology, characterized by the presence of nanowires and other nm-sized aggregates, most of them unstable over time. Post-growth processes occurring via quasi-Ostwald ripening both in air and in vacuum demonstrate an aging protocol in vacuum as a tool for the selection of ZnTPP nanowires, whose morphology and uniaxial orientation are demonstrated to be led by organic epitaxy. The ability of growing ZnTPP nanowires with a unique crystal structure and precise orientation gives the chance to observe the intrinsic optical anisotropy of the triclinic polymorph of ZnTPP crystal and establishes the role of intermolecular interactions, providing new perspectives in the study of the intrinsic physical properties of ZnTPP crystals.

6.
Nanomaterials (Basel) ; 7(9)2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28925951

ABSTRACT

This study presents a new bionanocomposite coating on poly(ethylene terephthalate) (PET) made of pullulan and synthetic mica. Mica nanolayers have a very high aspect ratio (α), at levels much greater than that of conventional exfoliated clay layers (e.g., montmorillonite). A very small amount of mica (0.02 wt %, which is ϕ ≈ 0.00008) in pullulan coatings dramatically improved the oxygen barrier performance of the nanocomposite films under dry conditions, however, this performance was partly lost as the environmental relative humidity (RH) increased. This outcome was explained in terms of the perturbation of the spatial ordering of mica sheets within the main pullulan phase, because of RH fluctuations. This was confirmed by modelling of the experimental oxygen transmission rate (OTR) data according to Cussler's model. The presence of the synthetic nanobuilding block (NBB) led to a decrease in both static and kinetic coefficients of friction, compared with neat PET (≈12% and 23%, respectively) and PET coated with unloaded pullulan (≈26% reduction in both coefficients). In spite of the presence of the filler, all of the coating formulations did not significantly impair the overall optical properties of the final material, which exhibited haze values below 3% and transmittance above 85%. The only exception to this was represented by the formulation with the highest loading of mica (1.5 wt %, which is ϕ ≈ 0.01). These findings revealed, for the first time, the potential of the NBB mica to produce nanocomposite coatings in combination with biopolymers for the generation of new functional features, such as transparent high oxygen barrier materials.

7.
Curr Eye Res ; 42(4): 498-505, 2017 04.
Article in English | MEDLINE | ID: mdl-27610546

ABSTRACT

PURPOSE: The aim of this study was to quantitatively characterize the micromorphology of contact lens (CL) surfaces using atomic force microscopy (AFM) and multifractal analysis. MATERIALS AND METHODS: AFM and multifractal analysis were used to characterize the topography of new and worn siloxane-hydrogel CLs made of Filcon V (I FDA group). CL surface roughness was studied by AFM in intermittent-contact mode, in air, on square areas of 25 and 100 µm2, by using a Nanoscope V MultiMode (Bruker). Detailed surface characterization of the surface topography was obtained using statistical parameters of 3-D (three-dimensional) surface roughness, in accordance with ISO 25178-2: 2012. RESULTS: Before wear, the surface was found to be characterized by out-of-plane and sharp structures, whilst after a wear of 8 h, two typical morphologies were observed. One morphology (sharp type) has a similar aspect as the unworn CLs and the other morphology (smooth type) is characterized by troughs and bumpy structures. The analysis of the AFM images revealed a multifractal geometry. The generalized dimension Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. CONCLUSIONS: Surface statistical parameters deduced by multifractal analysis can be used to assess the CL micromorphology and can be used by manufacturers in developing CLs with improved surface characteristics. These parameters can also be used in understanding the tribological interactions of the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid (friction, wear, and micro-elastohydrodynamic lubrication at a nanometer scale).


Subject(s)
Contact Lenses, Hydrophilic , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Siloxanes/chemistry , Surface Properties , Adult , Disposable Equipment , Female , Fractals , Humans , Male , Materials Testing , Microscopy, Atomic Force , Young Adult
8.
Nanomaterials (Basel) ; 6(12)2016 Dec 21.
Article in English | MEDLINE | ID: mdl-28335372

ABSTRACT

In this work, we present the development of bionanocomposite coatings on poly(ethylene terephthalate) (PET) with outstanding oxygen barrier properties. Pullulan and graphene oxide (GO) were used as main polymer phase and nanobuilding block (NBB), respectively. The oxygen barrier performance was investigated at different filler volume fractions (ϕ) and as a function of different relative humidity (RH) values. Noticeably, the impermeable nature of GO was reflected under dry conditions, in which an oxygen transmission rate (OTR, mL·m-2·24 h-1) value below the detection limit of the instrument (0.01 mL·m-2·24 h-1) was recorded, even for ϕ as low as 0.0004. A dramatic increase of the OTR values occurred in humid conditions, such that the barrier performance was totally lost at 90% RH (the OTR of coated PET films was equal to the OTR of bare PET films). Modelling of the experimental OTR data by Cussler's model suggested that the spatial ordering of GO sheets within the main pullulan phase was perturbed because of RH fluctuations. In spite of the presence of the filler, all the formulations allowed the obtainment of final materials with haze values below 3%, the only exception being the formulation with the highest loading of GO (ϕ ≈ 0.03). The mechanisms underlying the experimental observations are discussed.

9.
Nanotechnology ; 26(27): 275703, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26080998

ABSTRACT

Polymer nanocomposites are increasingly important in food packaging sectors. Biopolymer pullulan is promising in manufacturing packaging films or coatings due to its excellent optical clarity, mechanical strength, and high water-solubility as compared to other biopolymers. This work aims to enhance its oxygen barrier properties and overcome its intrinsic brittleness by utilizing two-dimensional planar graphene oxide (GO) nanoplatelets. It has been found that the addition of only 0.2 wt% of GO enhanced the tensile strength, Young's modulus, and elongation at break of pullulan films by about 40, 44 and 52%, respectively. The light transmittance at 550 nm of the pullulan/GO films was 92.3% and haze values were within 3.0% threshold, which meets the general requirement for food packaging materials. In particular, the oxygen permeability coefficient of pullulan was reduced from 6337 to 2614 mL µm m(-2) (24 h(-1)) atm(-1) with as low as 0.05 wt% of GO loading and further to 1357 mL µm m(-2) (24 h(-1)) atm(-1) when GO concentration reached 0.3 wt%. The simultaneous improvement of the mechanical and oxygen barrier properties of pullulan was ascribed to the homogeneous distribution and prevalent unidirectional alignment of GO nanosheets, as determined from the characterization and theoretical modelling results. The exceptional oxygen barrier properties of pullulan/GO nanocomposites with enhanced mechanical flexibility and good optical clarity will add new values to high performance food packaging materials.


Subject(s)
Food Packaging/methods , Glucans/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Oxygen/chemistry , Oxygen/analysis , Permeability
10.
J Biomed Mater Res B Appl Biomater ; 101(8): 1585-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23559566

ABSTRACT

The low surface roughness of disposable contact lenses made of a new siloxane-hydrogel loaded with hyaluronic acid is reported, as studied by atomic force microscopy (AFM). Before the wear, the surface is characterized by out-of-plane and sharp structures, with maximum height of about 10 nm. After a wear of 8 h, evidence of two typical morphologies is provided and discussed. One morphology (sharp type) has a similar aspect as the unworn lenses with a slight increase in both the height and the number of the sharp peaks. The other morphology (smooth type) is characterized by troughs and bumpy structures. Wettability and clinical performances are also discussed, the latter deduced by the ocular-surface-disease index (OSDI). The main finding arising from this work is the indication of correlation between the change of the OSDI before and after wear and the lens surface characteristics obtained by AFM.


Subject(s)
Contact Lenses, Hydrophilic , Hydrogels/chemistry , Siloxanes/chemistry , Humans , Hyaluronic Acid/chemistry , Materials Testing , Microscopy, Atomic Force , Polymers/chemistry , Surface Properties , Tensile Strength , Time Factors , Wettability
11.
Langmuir ; 28(30): 11206-14, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22765289

ABSTRACT

In this paper, the preparation and characterization of oxygen barrier pullulan sodium montmorillonite (Na(+)-MMT) nanocomposite coatings are presented for the first time. Full exfoliation of platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a pivotal factor in the oxygen barrier performance of the final material even at high relative humidity (RH) conditions [oxygen permeability coefficients ~1.43 ± 0.39 and 258.05 ± 13.78 mL·µm·m(-2)·(24 h)(-1)·atm(-1) at 23 °C and 0% RH and 70% RH, respectively]. At the micro- and nanoscale, the reasons are discussed. The final morphology of the coatings revealed that clay lamellae were stacked on top of one another, probably due to the forced confinement of the platelets within the coating thickness after solvent evaporation. This was also confirmed by modeling the experimental oxygen permeability data with the well-known Nielsen and Cussler permeation theoretical models, which suggested a reasonable aspect ratio (α) of ~100. Electron microscopic analyses also disclosed a peculiar cell-like arrangement of the platelets. The stacking of the clay lamellae and the cell-like arrangement create the excellent oxygen barrier properties. Finally, we demonstrated that the slight haze increase in the bionanocomposite coating materials arising from the addition of the clays depends on the clay concentration but not so much on the sonication time, due to the balance of opposite effects after sonication (an increase in the number of scattering centers but a reduction in their size).


Subject(s)
Bentonite/chemistry , Nanocomposites/chemistry , Oxygen/chemistry , Glucans/chemistry , Nanotechnology/methods , Permeability , Sonication , Surface Properties
12.
ACS Appl Mater Interfaces ; 4(7): 3692-700, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22758352

ABSTRACT

A new antifog coating made of pullulan is described in this work. The antifog properties are discussed in terms of wettability, surface chemistry/morphology, and by quantitative assessment of the optical properties (haze and transparency) before and after fog formation. The work also presents the results of antifog tests simulating the typical storage conditions of fresh foods. In these tests, the antifog efficiency of the pullulan coating was compared with that of two commercial antifog films, whereas an untreated low-density polyethylene (LDPE) film was used as a reference. The obtained results revealed that the pullulan coating behaved as a "wetting enhancer", mainly due to the low water contact angle (∼24°), which in turn can be ascribed to the inherent hydrophilic nature of this polysaccharide, as also suggested by the X-ray photoelectron spectroscopy experiments. Unlike the case of untreated LDPE and commercial antifog samples, no discrete water formations (i.e., droplets or stains) were observed on the antifog pullulan coating on refrigeration during testing. Rather, an invisible, continuous and thin layer of water occurred on the biopolymer surface, which was the reason for the unaltered haze and increased transparency, with the layer of water possibly behaving as an antireflection layer. As confirmed by atomic force microscopy analysis, the even deposition of the coating on the plastic substrate compared to the patchy surfacing of the antifog additives in the commercial films is another important factor dictating the best performance of the antifog pullulan coating.


Subject(s)
Coated Materials, Biocompatible/chemical synthesis , Food Packaging , Glucans/chemistry , Glucans/pharmacology , Steam , Wettability/drug effects , Biopolymers/chemistry , Biopolymers/pharmacology , Coated Materials, Biocompatible/chemistry , Food Packaging/instrumentation , Food Packaging/methods , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Photoelectron Spectroscopy , Plastics , Surface Properties
13.
J Colloid Interface Sci ; 360(2): 422-9, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21600586

ABSTRACT

The utilization of metal nanoparticles (NPs) to fabricate metal electrodes under mild conditions is one of the most studied topic in recent years. In this work, colloidal Au NPs were deposited on two isostructural molecular crystals, namely 1,2,3,4-tetrafluoro-7-thiomethyl-acridine (MeSAcr) and 1,2,3,4-tetrafluoro-7-methoxy-acridine (MeOAcr), exposing S atoms and O atoms, respectively, at their largest crystal faces. The depositions were carried out mainly by drop casting under ambient conditions, increasing the contact time from 1 to 120 min, and the samples were then analyzed by atomic force microscopy (AFM) to evaluate the coverage. Thanks to the affinity between S and Au atoms, Au NPs are observed to adhere on the MeSAcr surface within 1-min contact time, whereas at least 1h is required to find NPs on the MeOAcr surface. NP adsorption is also affected by the substrate surface morphology; indeed, step edges represent preferential adsorption sites even in the absence of Au-S interaction. Experiments under different conditions were performed to maximize the coverage on MeSAcr, reaching values up to 13%. AFM equipped with fluid cell was also employed to simultaneously depositing and imaging NPs, achieving a better understanding of the adsorption mechanism.

14.
J Am Chem Soc ; 128(41): 13378-87, 2006 Oct 18.
Article in English | MEDLINE | ID: mdl-17031949

ABSTRACT

Hot-wall epitaxy and molecular-beam epitaxy have been employed for growing quaterthiophene thin films on the (010) cleavage face of potassium hydrogen phthalate, and the results are compared in terms of film properties and growth mode. Even if there is no geometrical match between substrate and overlayer lattices, these films are epitaxially oriented. To investigate the physical rationale for this strong orientation effect, optical microscopy, atomic force microscopy, and X-ray diffraction are employed. A clear correlation between the morphology of the thin films and the crystallographic orientation is found. The results are also validated by surface potential calculations, which demonstrate the primary role played by the corrugation of the substrate surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...