Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 372: 128668, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36693507

ABSTRACT

The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.


Subject(s)
Biofuels , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Metabolic Engineering , Metabolic Networks and Pathways , Terpenes/metabolism
2.
Biotechnol Lett ; 42(5): 773-785, 2020 May.
Article in English | MEDLINE | ID: mdl-31974649

ABSTRACT

OBJECTIVES: The construction and validation of a set of Yarrowia lipolytica CRISPR/Cas9 vectors containing six different markers that allows virtually any genetic background to be edited, including those of wild-type strains. RESULTS: Using the Golden Gate method, we assembled a set of six CRISPR/Cas9 vectors, each containing a different selection marker, to be used for editing the genome of the industrial yeast Y. lipolytica. This vector set is available via Addgene. Any guide RNA (gRNA) sequence can be easily and rapidly introduced in any of these vectors using Golden Gate assembly. We successfully edited six different genes in a variety of genetic backgrounds, including those of wild-type strains, with five of the six vectors. Use of these vectors strongly improved homologous recombination and cassette integration at a specific locus. CONCLUSIONS: We have created a versatile and modular set of CRISPR/Cas9 vectors that will allow any Y. lipolytica strain to be rapidly edited; this tool will facilitate experimentation with any prototroph wild-type strains displaying interesting features.


Subject(s)
Fungal Proteins/genetics , Gene Editing/methods , Yarrowia/growth & development , CRISPR-Cas Systems , Homologous Recombination , Mutation , RNA, Guide, Kinetoplastida/genetics , Yarrowia/genetics
3.
Biotechnol Bioeng ; 115(9): 2292-2304, 2018 09.
Article in English | MEDLINE | ID: mdl-29733444

ABSTRACT

Progress in synthetic biology tools has transformed the way we engineer living cells. Applications of circuit design have reached a new level, offering solutions for metabolic engineering challenges that include developing screening approaches for libraries of pathway variants. The use of transcription-factor-based biosensors for screening has shown promising results, but the quantitative relationship between the sensors and the sensed molecules still needs more rational understanding. Herein, we have successfully developed a novel biosensor to detect pinocembrin based on a transcriptional regulator. The FdeR transcription factor (TF), known to respond to naringenin, was combined with a fluorescent reporter protein. By varying the copy number of its plasmid and the concentration of the biosensor TF through a combinatorial library, different responses have been recorded and modeled. The fitted model provides a tool to understand the impact of these parameters on the biosensor behavior in terms of dose-response and time curves and offers guidelines to build constructs oriented to increased sensitivity and or ability of linear detection at higher titers. Our model, the first to explicitly take into account the impact of plasmid copy number on biosensor sensitivity using Hill-based formalism, is able to explain uncharacterized systems without extensive knowledge of the properties of the TF. Moreover, it can be used to model the response of the biosensor to different compounds (here naringenin and pinocembrin) with minimal parameter refitting.


Subject(s)
Biosensing Techniques/methods , Flavanones/analysis , Transcription Factors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Transcription Factors/genetics
4.
Nat Commun ; 4: 2926, 2013.
Article in English | MEDLINE | ID: mdl-24336094

ABSTRACT

Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues.


Subject(s)
Bacteriophages , Escherichia coli/virology , Microscopy, Atomic Force/methods , Bacterial Adhesion , Bacteriophages/ultrastructure , Cell Wall/ultrastructure , Fluorescence
5.
ACS Nano ; 3(10): 3063-8, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19769381

ABSTRACT

A method is described for the site-directed manipulation of single filamentous bacteriophages, by using phage display technology and atomic force microscopy. f1 filamentous bacteriophages were genetically engineered to display His-tags on their pIX tail. Following adsorption on nitrilotriacetate-terminated surfaces, force spectroscopy with tips bearing monoclonal anti-pIII antibodies was used to pull on individual phages via their pIII head. Analysis of the force-extension profiles revealed that upon pulling, the phages are progressively straightened into an extended orientation until rupture of the anti-pIII/pIII complex. The single-virus manipulation technique presented here provides new opportunities for understanding the forces driving cell-virus and material-virus interactions, and for characterizing the binding properties of polypeptide sequences or proteins selected by the phage display technology.


Subject(s)
Bacteriophages/metabolism , Spectrum Analysis/methods , Adsorption , Bacteriophages/genetics , Bacteriophages/physiology , Escherichia coli/virology , Genetic Engineering , Microscopy, Atomic Force
6.
Biochimie ; 89(8): 1012-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17395356

ABSTRACT

In recent years, recovery and characterization of enzymes from fish and aquatic invertebrates have taken place and this had led to the emergence of some interesting new applications of these enzymes. However, much less is known about lipases from crustaceans. A lipolytic activity was located in the crab digestive glands (hepatopancreas), from which a crab digestive lipase (CDL) was purified. Pure CDL has a molecular mass of 65kDa as determined by SDS/PAGE analysis. Unlike known digestive lipases, CDL displayed its maximal activity on long and short-chain triacylglycerols at a temperature of 60 degrees C. A specific activity of 500U/mg or 130U/mg was obtained with TC(4) or olive oil as substrate, respectively. Only 10% of the maximal activity was detected at 37 degrees C. The enzyme retained 80% of its maximal activity when incubated during 10 min at 60 degrees C, and was completely inactivated at a temperature higher than 65 degrees C. Interestingly, neither colipase, nor bile salts were detected in the crab hepatopancreas. Which suggests that colipase evolved in invertebrates simultaneously with the appearance of an exocrine pancreas and a true liver which produce bile salts. No similarity between the 13 N-terminal amino acid residues of CDL was found with those of known other digestive lipases.


Subject(s)
Brachyura/enzymology , Hepatopancreas/enzymology , Lipase/chemistry , Lipase/isolation & purification , Temperature , Animals , Bile Acids and Salts/metabolism , Colipases/metabolism , Hydrogen-Ion Concentration , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...