Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401468

ABSTRACT

This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris-Vélib' Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.

2.
Mater Sci Eng C Mater Biol Appl ; 42: 295-302, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063122

ABSTRACT

The mixture system of long-chain polyelectrolyte complexed with a globular protein was investigated based on dynamic light scattering and turbidimetric measurements. We have discussed at different pH values the influence of high salt concentration and mass ratio (protein:PSSNa) on the behavior of the mixture. In dilute concentration regime, the PSSNa chain contracts at pHc by patch binding. We found two critical values of mass ratio: The first corresponds to the maximum shrinking of PSSNa. The second indicates the system that became more stable where the number of proteins attached to the PSSNa chain was constant. The screen of electrostatic interaction shows a high contribution of hydrophobic interaction at large salt concentration to form the coacervates. By building phase diagram, the continuity of pHφ1 in over whole range of salt concentrations and the widening of pH window (pHφ1-pHφ2) were observed. At certain salt concentrations, we can obtain the coexistence of two types of complex particles formed by electrostatic and hydrophobic interactions.


Subject(s)
Ovalbumin/chemistry , Ovalbumin/metabolism , Polymers/chemistry , Polymers/metabolism , Sulfonic Acids/chemistry , Sulfonic Acids/metabolism , Hydrogen-Ion Concentration , Light , Models, Molecular , Nephelometry and Turbidimetry , Polyelectrolytes , Scattering, Radiation , Sodium Chloride/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...